
UX Software - 2009

VISUAL GUIDE to

RX Scripting
for Roulette Xtreme - System Designer 2.0

i

TABLE OF CONTENTS

INTRODUCTION .. ii

What is this book about? .. iii
How to use this book .. iii
Time to start .. iv

GETTING ACQUANTIED WITH RX SCRIPTING .. 1
What is RX Scripting? .. 2
What RX Scripting Can Do .. 2
The Piece-together Language ... 2

Action Command ... 2
Condition Command .. 2

Putting the Pieces Together .. 3
Using the Statement Completion ... 4
The Initial System Design .. 6

System ... 6
Method ... 6

Block Structure .. 8
Format Structure .. 9
Using Comments ... 10
Storing Data Values ... 11

Data Records ... 11
Data Flags.. 12

Logical Comparisons for Condition Statements .. 13
Logical expression comparisons .. 13
Count of total comparisons .. 14
Lost bets comparisons ... 14
Win bets comparisons .. 15
Outcome of roulette layout comparisons .. 15
Found between 2 numbers comparisons ... 16
Last Answer comparisons .. 16
Span between 2 numbers on roulette wheel comparison .. 17
Distance between 2 numbers on the marquee board comparison ... 17
Pattern Match comparisons ... 18

WORKING WITH CONDITION COMMANDS .. 19
Initial Condition .. 20

While or If condition? ... 20
Loop Until condition ... 21

Continuation Condition .. 22
Using the Else continuation.. 24

Block Condition .. 25
Using the Group Condition ... 25

WORKING WITH ACTION COMMANDS .. 27
Place Action ... 28

Put action command .. 28
Put 100% action command .. 29

Mathematical Action .. 30
Add action command ... 30
Add 100% action command ... 31
Subtract and Subtract 100% action command ... 32
Multiply action command.. 32
Multiply 100% action command ... 33
Divide and Divide 100% action command .. 34

Input Action .. 37
Input Data action command ... 37
Input Dropdown action command .. 38
Display action command .. 39
Ask action command .. 40

ii

Assign Action ... 41
Assign action commands that alter Roulette Xtreme ... 41

Apply En Prison action command...41
Apply Le Partage action command...42
Load Double Wheel action command...43
Load Single Wheel action command ..44
Load No Zero Wheel action command ...45
Stop Session action command ...46

Assign action commands that copy data .. 47
Copy action command ..47
Copy Last action command ..48
Copy List action command ...49
Copy Neighbors action command ..50
Duplicate action command ...51

Miscellaneous Assign action commands ... 52
Track Last action command ...52
Clear action command ...53
Set Max action command ...54
Set List action command ..55
Generate Random Number action command ...56

Assign action command for data flags ... 57
Set Flag action command ...57
Reset All Flags action command ..58

WORKING WITH ROULETTE LAYOUTS ... 59
Inside Layouts.. 60

Individual Straight-up Numbers .. 60
Split .. 61
Horizontal Split ... 61
Vertical Split ... 62
Street ... 63
Line (Double Street) ... 64
Corner .. 65

Outside Layouts ... 66
Dozen .. 66
Column... 67
Even Chance ... 68

Using Layouts with Commands ... 69
Action Command ... 69
Condition Command .. 70

CREATING ROULETTE SYSTEMS .. 71
Martingale System ... 72
Expanding on the Martingale System .. 74
D’Alembert System .. 76
Reverse D’Alembert System .. 78
Labouchere System ... 80
Inside Number System ... 84

RX SCRIPTING TEMPLATE .. 91
Template to use when creating new systems .. 92
Adding the Template to System Editor ... 93

iii

INTRODUCTION i

Welcome to RX Scripting. Using this easy-to-learn programming language, you’ll be

able to create many roulette systems. This book has been written as a painless

introduction to RX Scripting, so you don’t have to be a geek or a nerd to write

roulette systems.

So put away your pocket protector as you will not need them at any time because

being a computer geek is not required.

 Introduction

iv

What is this book about?

This book is for people who want to take advantage of Roulette Xtreme’s powerful

RX Scripting language and create systems to test and use in real online or land

casinos.

We don’t assume you know anything about programming or scripting language. We

do however assume you know a little about the casino game of roulette and all of its

different betting combinations and payouts.

If you already know a little about programming, you should know that this book does

not take the same approach to RX Scripting as you might learn from other

languages. This book does not delve deeply into the RX Scripting language as you

can find all the information about the syntax language with the help documentation

included with Roulette Xtreme software. However, where appropriate, I will go into

detail on some action and condition commands so you don’t have to spend a lot of

time reading the help documentation. This book concentrates on showing you how to

create useful systems with RX Scripting without a lot of extraneous information.

How to use this book

Throughout this book, there are special techniques to make it easy for you to read

the book and understand the scripting language.

In the step-by-step instructions that make up most of this book, there are special

type styles to denote the RX Scripting code like this:

System "my system"

Method "main"

Begin

 While Starting a New Session

 Begin

 Put 1 unit on Black

 End

End

In the illustrations accompanying the step-by-step instructions, the highlighted parts

of the RX Scripting will be in red so you can quickly know what example is in

discussion. Also note that the RX Scripting language identifiers will be presented in

bold and the first letter is Capitalize, (i.e. Method, While, Begin). Other words will

be in normal text including any identifiers that require text enclosed in quotation

marks. Following is an example of an input action command with text enclosed in

quotation marks.

System "my system"

Method "main"

Begin

 Input Data ñEnter your bankrollò to Bankroll

End

Since I am referencing the input action command the entire RX Scripting format is in

red. All other words not part of the RX Scripting language will be in normal text as

well which are considered filler-words to help make the RX Scripting language easier

to read. (i.e. the word to as shown above)

When I am referring to language identifiers, I will underline and bold them like the

following action command: Put. This way it is not confusing when explaining about

this type of identifier.

 Introduction

v

Time to start

RX Scripting is very easy to start by creating a simple system that allows you to

place bets on the Roulette table. Then later add more complicated stuff as you need

it. You don’t have to learn the whole book’s worth of information before you can

create Roulette systems.

Of course, every journey begins with the first step of creating a simple system to a

more complex one.

1

GETTING

ACQUANTIED
WITH RX

SCRIPTING

1

For roulette gamblers, the evolution of creating systems has been a mixed blessing.

In the early days, creating systems was simple as writing them down on a piece of

paper (or back of a napkin). The only way to test these systems was to try it out on

a real casino and risk losing your money.

Now with internet gambling becoming very popular, gamblers are now able to test

the written systems in practice mode (offered on most internet gambling sites)

before risking any money.

Those types of testing are very tedious and time-consuming often leading to making

mistakes with hand written calculations and such.

Now with Roulette Xtreme System Designer software, you can easily create systems

and run them through a series of many tests to validate your system to ensure it is a

winning system before trying it out on any casino whether land or internet.

In this chapter, you will learn what RX Scripting can do and also some of the basics

of the RX Scripting language.

Getting Acquainted with RX Scripting Chapter 1

2

What is RX Scripting?

RX Scripting is a programming language that you can use to create roulette systems

with Roulette Xtreme System Designer software. But if you are not a programmer,

do not panic at the term “programming language”. There are many examples of RX

Scripting from different roulette boards especially the ones from the following sites:

¶ http://www.uxsoftware.com/pages/system.html/

¶ http://vlsroulette.com/

¶ http://www.laroulette.it/

The language consists of actions and conditions that allow you to play a created

system automatically by placing bets on the table for the development of betting.

For each spin the system runs through a series of commands. The structure of the

language is much like an English sentence. For example, the code in red below:

System ñmy systemò

{

 System to place 1 unit on black

}

Method "main"

Begin

 Put 1 unit on Black

End

The above RX Scripting code (which is an action command) is telling the system to

make a bet of 1 unit to the even chance of black on the roulette table and the result

from the code is shown below.

The scripting language is created inside method blocks that have a Begin and End

syntax identifier. The method main must exist as this is the entry point where the

system starts to run through the series of commands. One method called Method

main which must exists for every system otherwise the program will fail to compile

and work correctly.

http://www.uxsoftware.com/pages/system.html
http://vlsroulette.com/
http://www.laroulette.it/

Getting Acquainted with RX Scripting Chapter 1

2

What RX Scripting Can Do

There are many things you can do with RX Scripting when creating a roulette

system. RX Scripting lets you create an active user interface, giving you feedback to

enter information before or during an active session.

For example, you might want the system to ask you for a starting bankroll (units) at

the start of a new session. That’s done with the action Input Data command. RX

Scripting language for this action user interface is shown below.

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Input Data ñEnter your starting Bankrollò to Bankroll

 End

End

When the script is run, the system presents a user interface dialog screen allowing

them to enter a bankroll amount.

You can use RX Scripting to perform complex calculations like tracking the last 37

numbers that have appeared or place bets on different table layouts based on results

from certain types of conditions. You can also access statistical data from the

outcomes of any of the roulette’s layouts such as standard deviation, mean,

minimum and maximum and process those statistical data measures to perform

decisions of when to bet or when to quit a session.

With RX Scripting, you have the ability to access almost all of the input and

statistical functions of Roulette Xtreme software. What that means is you can read

through the history of outcomes that have already occurred, access statistical data

and perform comparisons of one outcome to another, change the wheel layout from

European to American or none and so on.

Getting Acquainted with RX Scripting Chapter 1

2

The Piece-together Language

RX Scripting is an English style language pieced together by different parts to form a

complete statement. The first part of a statement is a command which could be an

action or a condition type of command. These two types of commands make up the

entire RX Scripting language. You perform some action (i.e. placing a bet) or from

the results of a condition, perform some action, (i.e. when red has appeared 3 times,

bet on black). The following describes the two different types of commands.

Action Command

An action command is an identifier for performing something now without any

conditional event to occur. For example: let’s say I want to place a $5.00 unit on

black. If I was playing a real roulette game, I would put a $5.00 chip on the even

chance of black. The process is called an action. I performed such a task without

any regard to some conditional event. In this case, the action identifier, Put is the

command followed by several identifiers pieced-together to form a statement. Below

demonstrates how this is done with RX Scripting.

System ñmy systemò

Method ñmain"

Begin

 Put 5 units on the Black

End

Condition Command

A condition command is a logical process that produces an event of either a true or

false. For example: let’s say that I want to place a $5.00 unit on the even chance

of black only after I noticed that the color black has appeared 3 times in a row. So, I

patiently wait spin after spin until I noticed on the marquee board that black has

appeared 3 times and once this happens, I immediately place a $5.00 chip on the

even chance of black. This is called a condition event where I waited until the event

became true before I placed any bets. In this case, the condition identifier, If is the

command followed by several identifiers pieced-together to form a statement.

The next script example demonstrates how this is done with RX Scripting. The script

is using a condition statement to wait for black to appear 3 times in a row before

placing 5 units on the even chance of black. As you can see from the marquee board

that the last 3 outcomes are black thus causing the condition event to become true

which then executes the action statement to automatically place 5 units on the even

chance of black as shown on the far right image.

System ñmy systemò

Method ñmain"

Begin

 I f Black has Hit for 3 ti mes

 Begin

 Put 5 units on Black

 End

End

Getting Acquainted with RX Scripting Chapter 1

3

Putting the Pieces Together

You can put together the different parts to form the English style language to get a

better description of what you are trying do.

Let’s think about this English phrase.

¶ Place 5 chips on the number 21

Now, everyone can figure out what I mean by the phrase: Place 5 units on the

number 21. It simply means that I am going to place $5.00 (assuming a unit has the

value of $1.00) on the number 21 of the roulette table. So RX Scripting language is

very similar in this situation. The difference is the exact wording of the syntax. Here is

the exact syntax of the different parts for the above phrase.

System ñmy systemò

Method ñmain"

Begin

 Put 5 Number 21

End

Notice that this syntax is a little strange to figure out what it is trying to say. With RX

Scripting you can add additional non-functional words to help make the English style

sentence make sense. So based on my example of wanting to bet $5.00 on the

number 21, I would add some non-functional words like in the next script example.

System ñmy systemò

Method ñmain"

Begin

 Put 5 units on the Number 21

End

Now isn’t that easier to read and understand? Clearly there are many different ways

to express that I want to bet $5.00 on number 21, but for RX Scripting language,

there is only 1 way to perform this task. The above language is broken down into 3

parts. The first part is Put which is the initial part of an action command. The second

part (known as identifier) is 5 which the amount of the bet. The third identifier is

Number 21 which is the roulette number that I am placing a bet on hoping it will

appear on the next spin of the wheel. The script below shows an example of making

bets on 6 different numbers on the roulette table using the action command Put (in

this case, to place bets). On every spin, the system places 6 bets on 12,13,19,21,29

and 32.

System ñmy systemò

Method ñmain"

Begin

 Put 1 unit on the Number 12

 Put 1 unit on the Number 13

 Put 1 unit on the Number 21

 Put 1 unit on the Number 29

 Put 1 unit on the Number 29

 Put 1 unit on the Number 32

End

Getting Acquainted with RX Scripting Chapter 1

4

Using the Statement Completion

The built-in statement completion for Roulette Xtreme allows you to create complete

action or condition statements that are valid and produce no errors when the system

compiles the program. The best way to describe the built-in function is to provide an

example:

System ñmy systemò

Method ñmain"

Begin

 If Black has Hit for 3 times

 Begi n

 Put 5 units on Black

 End

Let’s focus on the action statement: Put 5 units on Black and create the correct

syntax using the built-in statement completion. Assuming that you already entered

the condition statement above, perform the following steps:

1. Just below the Begin identifier on a new line, press the F2 key. A valid list of

condition and actions commands will be displayed. Find and select the Put

action, then press the enter key.

2. After pressing the enter key, the word Put is added to your system. Now

again press the F2 key. This will display the next set of valid identifiers.

Locate and select the numeric data identifier, then press the enter key. The

system will insert a 1 next to the Put action command. At this point,

manually change the numeric value from 1 to 5.

3. Press the F2 key. This will display the next set of valid identifiers. Locate and

select the layout Black, then press the enter key.

Getting Acquainted with RX Scripting Chapter 1

5

4. The identifier Black will be added to your system. Press the F2 key. This will

display a complete list of condition and action commands which denote the

end of the Put action statement.

5. Now complete the sentence to make it easier to read by adding the non-filler

words: units on.

System ñmy systemò

Method ñmain"

Begi n

 If Black has Hit for 3 times

 Begin

 Put 5 units on Black

 End

End

As you can see, using the built-in statement completion makes it very easy to

construct any valid action or condition statements.

Getting Acquainted with RX Scripting Chapter 1

6

The Initial System Design

For each system design to be valid, there are two required keywords that must exist

for the system to run correctly.

System

The keyword System must be located at the first line in the document. Following

this keyword there would be a short text description enclosed in quotation marks “.

System ñMy first systemò

The keyword System tells the system compiler that this is a valid Roulette Xtreme

system.

Method

The keyword Method is a control block enclosed by the identifiers Begin and End.

Inside the control block is where all action and condition statements are performed.

Methods help group different routines of your system together. For example:

System ñMy first systemò

Method ñmain"

Begin

End

Method ñplace betsò

Begin

 Put 1 unit on List [13, 21, 32]

End

The above method called place bets is created once to place bets on numbers 13,

21 and 32. The following script demonstrates how the system can call the same

method more than once without duplicating the same statements by using the action

command Call.

System ñmy system ò

Method ñmain"

Begin

 If Black has Hit for 3 times

 Begin

 Call ñplace betsò

 End

 If Number 0 has Hit Each time

 Begin

 Call ñplace betsò

 End

End

Method ñplace betsò

Begin

 Put 1 unit on List [13, 21, 32]

End

Getting Acquainted with RX Scripting Chapter 1

7

Although you can create many methods (or none if you so choose), however you

must have one method called main as noted in the next script example. Without

this method, the system will not be able to find its entry point generate an error

message causing the system not to operate.

System ñmy system ò

Method ñmain"

Begin

 If Black has Hit for 3 times

 Begin

 Put 5 units on Black

 End

End

When you create multiple methods, they must be separated from each other. In

other words, you cannot create methods inside other methods. The script example

below shows a bad way to use multiple methods:

System ñmy system ò

{ BAD SCRIPT

 Cannot have methods inside other methods.

}

Method ñmain"

Begin

 Method ñDo this ò // ă WRONG!!!!!!

 Begin

 If Black has Hit for 3 times

 Begin

 Put 5 units on Black

 End

 End

End

The image below demonstrates the error message when trying to create methods

within methods.

Getting Acquainted with RX Scripting Chapter 1

8

Block Structure

A block structure is a section of the program that encapsulates all of the statements

that will run inside the block. A block structure is used for all methods and logical

condition statements. The block is identified by two important keywords.

¶ Begin: this keyword that is followed by a method block or condition block and

denotes the start of a block. When the program enters a block structure, its

entry point is just passed the Begin identifier.

¶ End: this keyword that denotes the end of the block structure. Once the

program reaches the End keyword, the program returns back to the calling

statement. If the block was the method main then the program will exit and

wait for another spin to be processed either manually or automatically. If the

block was a condition statement, the program will continue forward to the next

statement.

The identifiers Begin and End work in pairs meaning for every Begin identifier; there

must be an End identifier. The system is designed to allow you to have many block

structures to help improve the functionality and ease of readability of your designed

system. The example below shows how the Begin and End identifiers are placed just

after a Method or condition statement to form a block.

System ñmy systemò

Method ñmain"

Begin

 If Black has Hi t for 3 times

 Begin

 Call ñplace betsò

 End

End

Method ñplace betsò

Begin

 Put 5 units on the 1st Dozen

End

Getting Acquainted with RX Scripting Chapter 1

9

Format Structure

The format of the system language within the system editor is loose, meaning that

the language identifiers do not have to be located at certain lines or spaces. The

compiler is smart enough to know when a statement begins and ends. The example

below shows how program statements can be scattered on multiple lines. As long as

the statement is in the correct order, you can place them on separate lines. This can

be helpful with long statements that must wrap to the next line.

System ñmy systemò

Method

"main"

Begin If Black has

 Hit Each time Begin

 Put 5 units

 on

 Black

End End

To help make your system easy to read and understand, it is good practice to format

your system in a structured format. Always place methods on a single line followed

by the Begin identifier on the next line at column 1. If possible place condition

statements on one line followed by the Begin identifier just below the initial part of

the condition identifier on the next line. The same is true for any action statements.

If the condition or action statement cannot fit on one line, then place the remaining

statement on the next line indented by three spaces. When placing the End

identifiers, always place them inline with its partner Begin identifier in the same

column location. A good format is shown below.

System ñmy systemò

Method ñmain"

Begin

 If Black has Hit Each tim e

 Begin

 Put 5 units on Black

 End

End

You can also place the Begin identifier just after the condition statement on the

same line and place the End identifier inline with the initial part of the condition

identifier. This type of format is used by many system designers that I have seen on

some roulette boards. An example of this is shown below.

System ñmy systemò

Method ñmain"

Begin

 If Black has Hit Each time Begin

 Put 5 units on Black

 End

End

Getting Acquainted with RX Scripting Chapter 1

10

Using Comments

Comment identifiers are used for documenting your system. You can place

comments anywhere in your system and it is considered best practice. Comments

help explain what the system is trying to accomplish. Without comments, it may be

difficult to understand the logic of the system. You can add comments two different

ways:

¶ Multi-line: documented text information that is enclosed in brackets { }.

You can use this when documenting a section of the designed roulette
system that spans more than one line.

¶ Single-line: documented text information that is located after two forward

slashes //. You can use this when documenting a single comment line.

The next example shows the two different types of comments.

System ñmy systemò

{

This simple system waits until the color black has re peated

three times in a row. Once this occurs, a 5 unit bet will be

placed on the color black.

}

Method ñmain" // main entry point

Begin

// Check if black repeats 3 times

 If Black has Hit for 3 times

 Begin

 { Black repeated 3 times

 in a row. Place 5 units

 on black

 }

 Put 5 units on Black

 // end of condition block

 End

{ end of main method.

return back to main program

}

End

The more comments added to your system, the easier it is to understand your

system.

Getting Acquainted with RX Scripting Chapter 1

11

Storing Data Values

The power of RX Scripting is the ability to store data values. Data values consist of

logical values that consist of a true or false condition or storage values such as your

beginning bankroll balance, betting amounts or roulette layouts. Storing data values

are easy to do and Roulette Xtreme provides an easy way to view data values that

have been stored. The two ways to store data values are using what’s called data

records and data flags.

Data Records

Data records provide a way to store numeric data, (i.e. 5, 4.1, 100) and roulette

layouts, (i.e. black, 1st Dozen, number 19). Once data is stored in data records,

they can be retrieved to be used in a variety of different ways. Here are some

examples of their usage.

¶ Store a list of progression numbers when placing bets, (i.e. 1, 2, 4, 8, 16,

32)

¶ Store a list of roulette layouts to place bets and use for comparisons (i.e.

number 1, number 19)

¶ Store a counter to keep track of wins and losses or point to the next

progression in a list

The syntax for storing values to a data record is: Record “some name”. Note the

“some name” text information. Every data record must have a unique name

enclosed in quotation marks in order to reference the data record within your

system. When storing numeric data to your system, you will use the identifier Data

and when storing roulette layout information, you will use the identifier Layout.

These are both added to the end of the Record “some name”. There are additional

identifiers used with data records as well but I’ll discuss those later in this book. The

following example shows the usage of data records of storing numeric and layout

values. Note the identifiers Data and Layout at the end of the statement.

System ñmy systemò

Method ñmain"

Begin

 // Initialize on a new session

 While Starting a New Session

 Begin

 Set List [1, 2, 4, 8] to Record ñprogressionò Data

 Copy List [21, 0, 19, 13, 32] to

 Record ñroulette numbersò Layout

 Set Flag ñready to betò to False

 End

End

Getting Acquainted with RX Scripting Chapter 1

12

Data Flags

Data flags provide a way to store logical information such as true or false. Within

your designed system, there may be times when you need to perform some action

based on a logical condition using a logical value that was previously stored. Here

are some examples:

¶ A logical value to indicate when to end a session.

¶ A logical value to indicate when to start placing bets

The syntax for storing values to a data flag is: Flag “some name” followed by the

identifier True or False. Note the “some name” text information. Every data flag

must have a unique name enclosed in quotation marks in order to reference the data

flag within your system. The following example shows the usage of data flags of

storing logical values.

System ñmy systemò

Method ñmain"

Begin

 // Initialize on a new session

 While Starting a New Session

 Begin

 Set List [1, 2, 4, 8] to Record ñprogressionò Data

 Copy List [21, 0, 19, 13, 32] to

 Record ñroulette numbersò Layo ut

 Set Flag ñready to betò to False

 End

End

It is always good practice to identify the data records and data flags by using text

names that make sense to the type of data being stored. For example, if you want

to create a list of progression bets, name your data record as progression. Also, if

you need to store a true/false value and use that to indicate when to place bets,

then use a data flag and name it as place bets. This will let you know the data

flags purpose. So, when this data flag is set to true, you will know when to place

bets and perform the necessary action statements to accomplish this.

Getting Acquainted with RX Scripting Chapter 1

13

Logical Comparisons for Condition Statements

When using a condition statement, the system performs some type of logical

comparison that returns either true or false. Based on the results, you can perform

some action or another conditional process. You can perform a comparison from one

data record to another or perform a comparison of a roulette number to a numeric

value (i.e. check to see if a particular layout for example, black has appeared n

number of times).

The following several tables lists all of the possible logical comparisons that are

supported and their usage. They are group by their comparison function. The table

lists four variables such as X, Y, n and t to denote some property. Their descriptions

are listed below.

¶ X: represents the left side of the comparison statement. Could be a roulette

layout such as Number 21, Black, Column A or an internal variable such as

Bankroll or a data record.

¶ Y: represents the right side of the comparison statement. Could be a roulette

layout such as Number 21, Black, Column A or an internal variable such as

Bankroll or a data record.

¶ n : represents a numeric value

¶ t : represents a second numeric value (if more than 1 numeric value is

required) for this type of comparison

Logical expression comparisons

Comparison What it does

X = Y Returns true if X and Y are equal

X Not = Y Returns true if X and Y are NOT equal

X > Y Returns true if X is g reater than Y

X >= Y
Returns true if X is greater than or equal

t han Y

X < Y Returns true if X is less than Y

X <= Y Returns true if X is less than or equal to Y

Below is an example of using the logical comparison of = (equal) to check if the

bankroll is equal to 15. As noted in the previous table, the X variable is represented

by the identifier Bankroll and the Y variable is represented by the numeric value

115.

System ñmy systemò

Method ñmain"

Begin

 If Bankroll = 115 // noted as: X = Y

 Begi n

 Stop Session

 End

End

Getting Acquainted with RX Scripting Chapter 1

14

Count of total comparisons

Comparison What it does

X count = n Returns true if total count of X equals n

X count NOT =

n

Returns true if total count of X is NOT

equal to n

X count > n
Returns true if total coun t of X is greater

than n

X count >= n
Returns true if total count of X is greater

than or equal to n

X count < n
Returns true if total count of X is less

than n

X count <= n
Returns true if total count of X is less

than or equal to n

Below is an example of using the Count = (equal) comparison to check if the total

count of individual bets placed on the roulette table is equal to 3. As noted in the

previous table, the X variable is represented by the identifier Total Number Bets

and the n variable is represented by the numeric value 3.

System ñmy systemò

Method ñmain"

Begin

 If Total Number Bets Count = 3 // X count = n

 Begin

 Put 2 units on Number 0

 End

End

Lost bets comparisons

Comparison What it does

X lost n
Returns true if X has lost for n times

in a consecutive row

X lost each Returns true if X has lost each time

X lost more n
Returns true if X has lost more than n

times in a consecutive row

Below is an example of using the Lost comparison to check if the even chance of

black has lost a bet 2 times. As noted in the previous table, the X variable is

represented by the identifier Black and the n variable is represented by the numeric

value 2.

System ñmy systemò

Method ñmain"

Begin

 If Black has Lost 2 times in a row

 Begi n

 Add 10 units to Black

 End

End

Getting Acquainted with RX Scripting Chapter 1

15

Won bets comparisons

Comparison What it does

X won n
Returns true if X has won for n times in

a consecutive row

X won each Returns true if X has won each time

X won more n
Returns true if X has won more than n

times in a consecutive row

Below is an example of using the Won comparison to check if the even chance of red

has won a bet 3 times. As noted in the previous table, the X variable is represented

by the identifier Red and the n variable is represented by the numeric value 3.

System ñmy systemò

Method ñmain"

Begin

 If Red has Won 3 times in a row

 Begin

 Add 10 units to Black

 End

End

Outcome of roulette layout comparisons

Comparison What it does

X hit n
Returns true if X has appeared fo r n

times

X not hit n
Returns true if X has NOT appeared for n

times

X hit each Returns true if X has appeared each time

X NOT hit each
Returns true if X has NOT appeared each

time

X hit more n
Returns true if X has appeared more than

n times

X NOT hi t more n
Returns true if X has NOT appeared more

than n times

X hit between n t
Returns true if X has appeared between n

and t times

X NOT hit between

n t

Returns true if X has NOT appeared

between n and t times

Below is an example of using the Hit comparison to check if the 1st dozen has

appeared for 5 times in a row. As noted in the previous table, the X variable is

represented by the identifier 1st Dozen and the n variable is represented by the

numeric value 5.

System ñmy systemò

Method ñmain"

Begi n

 If 1st Dozen has Hit for 5 times in a row

 Begin

 Put 10 units on 2nd Dozen

 Put 10 units on 3rd Dozen

 End

End

Getting Acquainted with RX Scripting Chapter 1

16

Found within a list of numbers comparisons

Comparison What it does

X found Y
Returns true if X is found within a list

of Y values

X NOT found Y
Returns true if X is NOT found within a

list of Y values

Below is an example of using the Found comparison to check if the last number that

has appeared is within a list of 15 repeated numbers. As noted in the previous table,

the X variable is represented by the identifier Record “last number” Layout and the

Y variable is represented by the data record of Record “last 15 numbers” Layout.

The comparison would return a true result if the roulette number stored in the data

record last number is found within a list of numbers stored in data record last 15

numbers.

System ñmy systemò

Method ñmain"

Begin

 Copy Last Number to Record " last number " Layout

 I f Record " last number " Layout is Found within

 Record " last 15 num bers " Layout

 Begin

 Put 1 unit bet on Record " last 15 numbers " layout List

 End

 Track last Number for 15 spins to

 Record " last 15 numbers " layout

End

Last Answer comparisons

Comparison What it does

Last answer Yes
Returns true if the last input answer is

equal to Yes

Last answer No
Returns true if the last input answer is

equal to No

Below is an example of using the Last Answer comparison to check the value of the

last answer variable contains either a Yes or No value. The last answer variable is

assigned by the Ask dialog input command.

System ñmy systemò

Method ñmain"

Begin

 If Bankroll < 100

 Begin

 Ask " Do want to play another session?"

 If the Last Answer is No then

 Begin

 Stop Session

 End

 End

End

Getting Acquainted with RX Scripting Chapter 1

17

Span between 2 numbers on roulette wheel comparison

Comparison What it does

X span n Y

Returns true if the roulette number X is

between the distance of roulette number

Y by n on the roulette wheel

Below is an example of using the Span comparison to check if roulette number X is n

gaps between the roulette number Y. As noted in the previous table, the X variable is

represented by the identifier Record “number 1” Layout and the Y variable is

represented by the data record of Record “number 2” Layout and n variable is

represented by the numeric value 4. The comparison would return a true result if

the roulette number stored in data record number 1 is 4 gaps between the roulette

number stored in data record number 2 on the roulette wheel.

System "my system"

Method ñmain"

Begin

 Locate Number Backward 1 spin from Last Number

 to Record " number 2 " Layout

 Copy Last Number to Record " number 1 " Layout

 I f Record " number 1 " Layout Span is within 4 gaps

 from Record "n umber 2" Layout

 Begin

 Put 5 units on 1st Dozen

 End

End

Distance between 2 numbers on the marquee board comparison

Comparison What it does

X distance n Y
Returns true if the distance of n is

between X and Y

Below is an example of using the Distance comparison to check if the roulette

number X is n distance between the roulette number Y. As noted in the previous

table, the X variable is represented by the identifier Record “number 1” Layout and

the Y variable is represented by the data record of Record “number 2” Layout and

n variable is represented by the numeric value 5. The comparison would return a

true result if the roulette number stored in data record number 1 distance is with 5

outcomes from the roulette number stored in data record number 2 on the roulette

wheel.

System "my system"

Method ñmain"

Begin

 If Record " number 1" Layout Distance is within 5

 spins from Record " number 2" Layout

 Begin

 Put 2 units on Record " number 1" Layout

 Put 2 units on Record " number 2" Layout

 End

End

Getting Acquainted with RX Scripting Chapter 1

18

Pattern Match comparisons

Comparison What it does

X pattern match Y

Returns true if a list of values in X

has the exact pattern sequence of a list

of values in Y

X pattern NOT

match Y

Returns true if a list of values in X

does not have the exact pattern sequence

of a list of values in Y

Below is an example of using the Pattern Match comparison to check if the previous

even chance outcomes produced a pattern of black, black, red which is compared to

the contents of the data record patterns. As noted in the previous table, the X

variable is represented by the identifier List [Black, Black, Red] and the Y variable is

represented by the data record of Record “patterns” Layout. The comparison

would return a true result if the contents of the data record patterns contain a list of

even chance layouts of black, black, red.

System ñmy systemò

Method ñmain"

Begin

 Track last Red - Black patterns for 3 spins to

 Record " patterns " layout

 If List [Black, Black, Red] has a Pattern Match to

 Record "patterns" Layout

 Begin

 Put 5 units on Red

 End

End

19

WORKING WITH

CONDITION
COMMANDS

2

Before I discuss how to place bets using action commands, I figure it would be best to

discuss condition commands, what are they and how they are used? Since most

systems use some type of condition response, it would be best to learn these first.

Condition statements are commands that form a condition block. The logical outcome

will produce either a true or false result. If the result is true, the condition block will

execute. Some conditions could be starting a new session or testing to see if the

roulette even chance of black has appeared 5 times in a row. The first part of a

condition statement is a reserved word that initiates the condition followed by 1 or

several supporting identifiers to complete the statement.

The system language can support multiple condition statements to form a complex

condition block. Three special condition identifiers, Or, And, and XOR are used to

concatenate multiple conditions together. If the outcome of the entire multiple

condition blocks becomes true, the condition block will execute.

So to begin, I will discuss the three types of condition commands and their usage.

¶ Initial Condition

¶ Continuation Condition

¶ Block Condition

Working with Condition Commands Chapter 2

20

Initial Condition

To create a condition statement, you start with the initial condition. The following

table lists the various initial condition commands that are used when creating a

conditional event within your system.

Initial Their meaning

While

Initial process of a logical condition

statement

Example: While A = B, do thisé.

If

Same effect as the While condition command

Example: If A = B, do thisé.

The following script uses the initial condition command While,

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Set List [1, 2, 4, 8, 16] to Record ñprogression ò Data

 Put 1 unit on Red

 End

End

While or If condition?

From the previous example, I used the initial command While to test if a new

session has started. Another conditional command If is exactly the same type of

condition as noted in the following example.

System ñmy systemò

Method ñmain"

Begin

 If Starting a New Session

 Begin

 Set List [1, 2, 4, 8, 16] to Record ñprogression ò Data

 Put 1 unit on Red

 End

End

So, you may ask which one do I used.

When Roulette Xtreme was first created, the only initial command that existed was

the While command. Later, the condition command If was added to allow those

who like to use this command since it is similar to a Visual Basic syntax. It is

basically just a matter of preference on which one to use.

Working with Condition Commands Chapter 2

21

Loop Until condition

The Loop Until condition command is similar to the While or If commands except

for two items:

¶ If the outcome is evaluated as false, the program control is passed to the

body of the condition block.

¶ Once all of the action or condition commands within this conditional block have

been performed, program control is always return back to the beginning of the

condition block and the entire process is repeated until the outcome is

evaluated as true which then ends this condition.

The following table lists the Loop Until and its meaning along with a diagram of the

loop until process.

Initial Their meaning

Loop

Until

A condition block that

processes statements in a

closed loop until some

event causes the loop to

stop

Loop Until A > B

Every time the logical event is false, all of the commands within this block are

performed, and then repeated again until the event becomes true. At this point the

condition block ends and the program continues just after the End identifier. For

those who are programmers, this Loop Until command is similar to a Do Until

syntax in Visual Basic. For example, suppose you had a program to add a series of

numbers, but you never wanted the sum of the numbers to be more than 100. For

the Visual Basic syntax, the following code would look like this:

 Dim sum As Integer = 0

 Do Until sum >= 100

 sum = sum + 10

 Loop

And from the example above, for RX Scripting, the following code would look like this:

Put 0 on Record ñsumò Data

Loop Until Record ñsumò Data >= 100

Begin

 Add 10 to Record ñsumò Data

End

In the above RX Scripting code, the Loop Until line evaluates the data record sum to

see whether it is less than 100: If it is, the next line of RX Scripting action command

is run; if not, it moves to the next line of code following End identifier. The End

identifier tells RX Scripting to go back to the Loop Until line and evaluate the new

value of the data record sum.

Working with Condition Commands Chapter 2

22

Continuation Condition

Sometimes it is necessary to create a conditional event that occurs when two or more

logical events may occur. For this to happen, you concatenate these conditional

commands together using one of the three continuation commands: And, Or and

Xor.

The following table lists these continuation commands, their meaning and their truth

table.

Cond. Their meaning Truth table

And

Known as a logical

co njunction in which the

outcome result is true if

all of the combined

condition statements are

true ; else the outcome is

false.

While A = B AND C < D, do

thisé

A B A and B

False False False

False True False

True False False

True True True

Or

Known as a logical

disjunction in which the

outcome result is true if

any of the combined

condition statements are

true ; else the outcome is

false .

While A = B OR C < D, do

thisé

A B A and B

False False False

False True True

True False True

True True True

Xor

Known as an exclusive

disjunction in which the

outcome result is true if

either of the combined

condition statements is

true but not both; else the

outcome is false .

While A = B XOR C < D, do

thisé

A B A and B

False False False

False True True

True False True

True True False

Working with Condition Commands Chapter 2

23

The example below is showing how to concatenate the different continuation

condition commands.

System ñmy systemò

Method ñmain"

Begin

 If Black has Hit 3 times in a row

 And High has Hit 2 times in a row

 Or 1st Dozen has Hit 1 time in a row

 Begin

 Put 5 units on Column A

 Put 5 units on Column C

 End

End

Note the example is checking for three different events. By using a standard truth

table (as shown in the previous table), one could see that the statement above reads

like this:

¶ When black has appeared for 3 times And high numbers have appeared for 2

times, place 5 units on columns A and C

Or

¶ When the 1st dozen has appeared for 1 time, place 5 units on columns A and

C.

When combining logical And identifiers with Or and Xor identifiers together to create

a condition block, the system will create implied parentheses () around the And

identifier. For example,

the condition statement format:

¶ If condition 1

And condition 2

Xor condition 3

And condition 4

Or condition 5

then...

will be evaluated as

¶ If (condition 1 And condition 2)

Xor

(condition 3 And condition 4)

Or

(condition 5)

then...

All of the And identifiers are evaluated first, then the results will be evaluated with

the Or and Xor identifiers to determine the final outcome.

Working with Condition Commands Chapter 2

24

Using the Else continuation

The Else identifier is used in conjunction with either While or If initial condition

commands and therefore cannot be used as a standalone command.

The following table lists the Else identifier and its meaning.

Continuation Their meaning

Else

This condition is used with either the While

or If condition at the end of the condition

block. It causes the program to execute

statements if the initial condition statement

ret urns false.

While A = B

begin

 do thisé

end

Else

begin

 do this one..

end

Whenever the initial condition command is evaluated as false, the system will

execute lines after the Begin identifier from the Else command. For example:

System ñmy systemò

Method ñmain"

Begin

 If Black has Lost Each time

 Begin

 Put 5 units on Red

 End

 Else

 Begin

 Put 5 units on Black

 End

End

If the even chance layout of black had won a bet on each spin, the outcome of the

condition statement would be false (since we are looking for a loss and not a win),

and the program would move to the Else command and execute all lines following

the Begin identifier. In this example, the system would then place a 5 unit bet on

the even chance of black.

.

Working with Condition Commands Chapter 2

25

Block Condition

Using the Group Condition

The block condition command is a special command mainly used for grouping user

dialog information together. The following table lists the Group identifier and its

meaning.

Block Their meaning

Group

This co ndition is always evaluated as true and

therefore, allowing special action commands to

execute within this block.

By using the block condition, the user will be presented with an input dialog screen

containing one or many different input controls instead of having the system present

them one at a time.

When you use the Group condition command, only certain action commands and not

condition commands are allowed. Otherwise the system will generate an error

message. Below is a list of the allowable action commands.

Allowable Action commands Their usageé

Display message Displays information from the

message to the screen

Input Data message Y Prompts user with message for

input of a numeric value into Y.

Input Dropdown message Y Prompts user with message to

select an item for input from a

drop down list of values into Y.

Input Checkbox message Y Prompts user with message for

input to select a checkbox.

The screen shot below shows how the Group condition block with the allowable

action commands is presented to the user. Note each of these commands creates an

active user interface thus providing feedback to enter information before or during a

session. The only exception to this is the Display action command which only

provides information to the user. The RX Scripting for this example is on the next

page.

Working with Condition Commands Chapter 2

26

RX Scripting with all allowable action commands within a Group condition command.

System ñmy systemò

Method ñmain"

Begin

 // Initialize on a new session

 While Starting a New Session

 Begin

 Group

 Begin

 Display

 "Session will END when ALL sequences are

 met or your starting Bankroll has been

 depleted."

 Input Dropdown

 "What Table Layout to use?

 1:=European

 2:=American" to Record "table" Data

 Input Data

 "Enter Bankroll:ò to Record "bankroll" Data

 Input Checkbox

 ñInclude hedge bet 0?ò to Flag ñhedge betò

 End

 End

End

If you were to omit the Group condition command from script above, the system will

present each of the action commands to the user one screen at a time as noted in

the next screen shot example.

Sometimes you may want this to happen during a session for example, to let the

user know when a session has ended.

27

WORKING WITH

ACTION
COMMANDS

3

Now that you have learned condition commands and how they work with designing

systems it is now time to know how to write action commands like placing bets,

storing data into data records and such.

Action statements are commands that perform some immediate action without any

regards to the outcome of a logical condition. Some actions could be placing bets on

the roulette layout or storing data values into a data record. The first part of an action

statement is a reserved word that initiates the action followed by supporting identifiers

to complete the action statement.

In this chapter, I will discuss the six types of action commands and their usage.

¶ Place Action

¶ Mathematical Action

¶ Input Action

¶ Assign Action

¶ Maneuver Action

¶ Statistical Action

Working with Action Commands Chapter 3

28

Place Action

Place action commands allow you to place values onto roulette layouts, assign values

to internal variables or data records. The next set of action commands are used to

assign values to various destinations. See Table 3.0 in this chapter for the entire

possible destinations.

Put action command

The Put action command has two purposes:

1. Place bets onto any roulette layout such as Black, Number 12, Split 5-8 and

so on.

2. Assign values to data records or internal variables such as Bankroll.

The format is: Put N D where N is the numeric value (i.e. 1, 5, 10, 100, etc) and D

is the destination (i.e. Black, Number 30, Record “record 1” Data, etc.)

As a comparison, the Put action command is similar to an assignment function in

Visual Basic. Below is an example of assigning values in Visual Basic similar to RX

Scripting:

 'Roulette Layout Black

 Dim BlackLayout As Object

 'data record ñAmount to betò

 Dim AmountToBet As Decimal

 'internal variable Bankroll

 Dim Bankroll As Decimal

 'Assigment function ï similar to the Put action command

 BlackLayout = 5

 AmountToBet = 5

 Bankroll = 100

And now written with RX Scripting:

Sys tem ñmy systemò

Method ñmain"

Begin

 Put 5 units on Black

 Put 5 to Record ñAmount to bet ò Data

 Put 100 units to Bankroll

End

You may ask What if you want to assign values stored as variables. Use the Put

100% action command instead as discuss in the next section.

Working with Action Commands Chapter 3

29

Put 100% action command

As with the Put action command, this command performs the same function with

some exceptions:

¶ The value is from either a numeric value stored in a data record or the

numeric value from roulette layouts or internal variables.

¶ That value is then multiplied by the n % (percent) value.

¶ The multiplied result is assigned to data records or internal variables such as

Bankroll.

The format is: Put 100% S D where S is the source data value stored in a data

record; the data value must be numeric (i.e. 1, 5, 10, 100, etc) and D is the

destination (i.e. Black, Number 30, Record “record 1” Data, etc.) The 100%

parameter can be any percent value like 100, 200, 40, 20, and so on.

As a comparison, the Put 100% action command is similar to an assignment

function using a multiplier symbol * and divide symbol / in Visual Basic. Below is an

example assigning values in Visual Basic using the multiplier:

 'Roulette Layout Black

 Dim BlackLayout As Object

 'data record ñAmount to betò

 Dim AmountToBet As Decimal = 5

 'put 200% of AmountToBet to Black Layout

 BlackLayout = (AmountToBet * 200) / 100

As written in RX Scripting:

System ñmy systemò

Method ñmain"

Begin

 Put 5 to Record ñAmount to bet ò Data

 Put 200% of Record ñAmount to bet ò Data to Black

End

The result of this action command is shown below. Notice that the even chance of

black now has 10 units instead of 5 since the Put 200% doubled the amount from

the value stored in the data record Amount to bet.

The beauty of RX Scripting is that you don’t have to declare any variables. RX will

do that for you. All you have to do is use the Put action command to place a bet or

store a data value. And with the English type language, you don’t have to be a

programmer to perform this action.

Working with Action Commands Chapter 3

30

Mathematical Action

Mathematical action commands are similar to the Put action commands except for

the following:

¶ The system will perform a mathematical operation of either add, subtract,

multiply or divide of a value to the value stored at a destination such as

roulette layout, data record or internal variable.

Table 3.0 in this chapter is a table showing the entire possible storage destinations

and their meaning when using the mathematical action commands

Add action command

The Add action command has two purposes:

1. Add bets to an existing value onto any roulette layout such as Black, Number

12, Split 5-8 and so on.

2. Add values to an existing value located at data records or internal variables

such as Bankroll.

The format is: Add N D where N is the numeric value (i.e. 1, 5, 10, 100, etc) and D

is the destination (i.e. Black, Number 30, Record “record 1” Data, etc.)

In comparison, the Add action command is similar to a mathematical addition

operation in Visual Basic. Below is an example of performing an add operation in

Visual Basic similar to RX Scripting:

 'Roulette Layout

 Dim BlackLayout As Object

 'place a bet on Black layout

 BlackLayout = 5

 'Add 10 to Black layout . Results = 15

 BlackLayout = BlackLayout + 10

As written in RX Scripting:

System ñmy systemò

Method ñmain"

Begin

 Put 5 units on Black

 Add 10 to Black

End

Working with Action Commands Chapter 3

31

Add 100% action command

As with the Add action command, this command performs the same function with

some exceptions:

¶ The value is from either a numeric value stored in a data record or the

numeric value from roulette layouts or internal variables.

¶ That value is then multiplied by the n % (percent) value.

The multiplied result is the added to the value located at the data records or internal

variables such as Bankroll.

The format is: Add 100% S D where S is the source data value stored in a data

record; the data value must be numeric (i.e. 1, 5, 10, 100, etc) and D is the

destination (i.e. Black, Number 30, Record “record 1” Data, etc.) The 100%

parameter can be any percent value like 100, 200, 40, 20, and so on.

In comparison, the Add 100% action command is similar to an add operation

function using a multiplier symbol * and divide symbol / in Visual Basic. Below is an

example assigning values in Visual Basic using the multiplier:

 'Roulette Layout

 Dim BlackLayout As Object

 'data record

 Dim AmountToBet As Decimal = 5

 BlackLayout = 5

 'Add 200% of AmountToBet to Blac kLayout. Results = 15

 BlackLayout = BlackLayout + ((AmountToBet * 200) / 100)

As written in RX Scripting:

System ñmy systemò

Method ñmain"

Begin

 Put 5 units on Black

 Put 5 to Record ñAmount to bet ò Data

 Add 200% of Record ñAmount to bet ò Data to Black

End

The result of this action command is shown below. Notice that the even chance of

black now has 15 units instead of 10 since the Add 200% doubled the amount from

the value stored in the data record Amount to bet and then added to the existing

value in the even chance of Black.

32

Subtract and Subtract 100% action command

The Subtract and Subtract 100% action commands are the exact same

functionality as the Add and Add 100% action commands except instead of

performing a mathematical addition operation, they perform the mathematical

subtraction operation. So, visit the Add section on how these commands work.

Below I will show you a brief script example in Visual Basic and RX Scripting.

 Dim BlackLayout As Object

 BlackLayout = 5

 'Subtract 2 from Black layout. Results = 3

 BlackLayout = BlackLayout - 2

As written in RX Scripting:

System ñmy systemò

Method ñmain"

Begin

 Put 5 units on Black

 Subtract 2 from Black

End

Multiply action command

The Multiply action command has two purposes:

1. Multiply bets to an existing value onto any roulette layout such as Black,

Number 12, Split 5-8 and so on.

2. Multiply values to an existing value located at data records or internal

variables such as Bankroll.

The format is: Multiply N D where N is the numeric value (i.e. 1, 5, 10, 100, etc)

and D is the destination (i.e. Black, Number 30, Record “record 1” Data, etc.)

In comparison, the Multiply action command is similar to a mathematical

multiplication operation function in Visual Basic. Below is an example of performing

a multiplication operation in Visual Basic similar to RX Scripting:

 'Roulette Layout

 Dim BlackLayout As Object

 'place a bet on Black layout

 BlackLayout = 5

 'Multiply 2 to Black layout. Results = 10

 BlackLayout = BlackLayout * 2

As written in RX Scripting:

System ñmy systemò

Method ñmain"

Begin

 Put 5 units on Black

 Multiply 2 to Black

End

Working with Action Commands Chapter 3

33

Multiply 100% action command

As with the Multiply action command, this command performs the same function

with some exceptions:

¶ The value is from either a numeric value stored in a data record or the

numeric value from roulette layouts or internal variables.

¶ That value is then multiplied by the n % (percent) value.

The multiplied result is the multiplied to the value located at the data records or

internal variables such as Bankroll.

The format is: Multiply 100% S D where S is the source data value stored in a data

record; the data value must be numeric (i.e. 1, 5, 10, 100, etc) and D is the

destination (i.e. Black, Number 30, Record “record 1” Data, etc.) The 100%

parameter can be any percent value like 100, 200, 40, 20, and so on.

The Multiply 100% action command is similar to an multiply operation function

using a multiplier symbol * and divide symbol / in Visual Basic. Below is an example

assigning values in Visual Basic using the multiplier:

 'Roulette Layout

 Dim BlackLayout As Object

 'data record

 Dim AmountToBet As Decimal = 2

 BlackLayout = 5

 'Add 200% of AmountToBet to BlackLayout. Results = 20

 BlackLayout = BlackLayout * ((AmountToBet * 200) / 100)

The above example is written with RX Scripting on the next section:

System ñmy systemò

Method ñmain"

Begin

 Put 5 units on Black

 Put 2 to Record ñAmount to bet ò Data

 Multiply 200% of Record ñAmount to bet ò Data to Black

End

The result of this action command is shown below. Notice that the even chance of

black now has 20 units instead of 10 since the Multiply 200% doubled the amount

from the value stored in the data record Amount to bet and then multiplied to the

existing value in the even chance of black.

Working with Action Commands Chapter 3

34

Divide and Divide 100% action command

The Divide and Divide 100% action commands are the exact same functionality as

the Multiply and Multiply 100% action commands except instead of performing a

mathematical multiplication operation, they perform the mathematical division

operation. So, visit the Multiply section on how these commands work. One thing to

note, the dividend is the value stored at the destination and divisor is the value stored

in data record accessed by the 100% function.

Below is an example of Divide action command in Visual Basic and RX Scripting.

 'Roulette Layout

 Dim BlackLayout As Object

 ódivide a bet on Black layout

 BlackLayout = 20

 'Divide 2 from Black layout. Results = 10

 BlackLayout = BlackLayout / 2

As written in RX Scripting:

System ñmy systemò

Method ñmain"

Begin

 Put 20 units on Black

 // 2 is the divisor and

 // Black is the dividend

 // similar to Black / 2 = 10

 Divide 2 from Black

End

This next example is the Divide 100% action command in Visual Basic and RX

Scripting.

 'Roulette Layout

 Dim BlackLayout As Object

 'data record

 Dim AmountToBet As Decimal = 2

 BlackLa yout = 100

 'Divide 200% of AmountToBet to BlackLayout. Results = 25

 BlackLayout = BlackLayout / ((AmountToBet * 200) / 100)

As written in RX Scripting:

System ñmy systemò

Method ñmain"

Begin

 Put 2 to Record ñAmount to bet ò Data

 Put 100 on Black

 // Record ñAmount to betò is the divisor and

 // Black is the dividend

 // similar to Black / Record ñxxxò Data = 25

 Divide 200% of Record ñAmount to bet ò Data to Black

End

Working with Action Commands Chapter 3

35

The result of this action command is shown below. Notice that the even chance of

black now has 25 units instead of 50 since the Divide 200% doubled the amount

from the value stored in the data record Amount to bet and then divided to the

existing value in the even chance of Black.

So you may ask, what happ ens if RX divides by 0, do you get an error message? The

answer to that question is no. If you try to divide by zero, the system just ignores the

error and returns a result of 0 to your roulette layout or data record. So this type of

error message is nothing to worry about.

Working with Action Commands Chapter 3

36

Table 3.0 - Storage destinations when using the place and mathematical action

commands.

Identifier Their meaning

Bankroll

Sets the internal variable bankroll from

the calculated value which is displayed

on the main screen under the Bankroll

field.

All Bets

Places a bet from the calculated value

on all of the possible bet locations on

the roulette table. Any value will be

place on all of these locations.

All Outside

Places a bet from the calculated value

only on the outside po ssible bet

locations on the roulette table. Any

value will be place on all of these

outside locations.

All Inside

Places a bet from the calculated value

only on the inside possible bet

locations on the roulette table. Any

value will be place on all of th ese

inside locations.

Record ñxyz ò Data

Stores a numeric value from the

calculated value to the data record

ñxyzò data section.

Record ñxyz ò Layout

Places a bet from the calculated value

to the roulette layout that is stored in

this data record ñxyzò.

Neighbor Count

Sets the internal variable neighbor

count from the calculated value to be

used later when working with neighbor

bets.

Record ñxyz ò Data

Index

Sets the data record index from the

calculated value for the data section.

This is used to acc ess a number from a

list of numbers stored in this data

record ñxyzò. (i.e. 1,2,4,6,8)

Record ñxyz ò Layout

Index

Sets the data record index from the

calculated value for the layout section.

This is used to access a roulette layout

from a list of layouts stored in this

data record ñxyzò. (i.e. Number, 5,

Number 10, Number 13)

List [Y1,Y2,Y3]

Places a bet from the calculated value

on all roulette layouts that are in a

list enclosed in brackets. (i.e. [Number

13, Number 19, Split(5 - 8)])

Record ñxyz ò Layout

List

Places a bet from the calculated value

on all roulette layouts that are stored

as a list in a data record ñxyzò (i.e.

Number 13, Number 19, Split(5 - 8))

Any roulette layout

(i.e. Number 13,

Corner A, etc.)

Places a bet from the calculated value

direc tly on any of the roulette layouts.

(i.e. Number 13)

Working with Action Commands Chapter 3

37

Input Action

Input action commands provide an active user interface, giving you feedback to

enter information before or during an active session. This is a very powerful feature

because you have the ability to provide your own data to alter the outcome of your

system. For example, entering a starting bet amount prior to a new session. Having

your session ask you if you want to stop after reaching your win goal. The

possibilities are endless on what you can do with input action commands.

The next set of action commands are used to provide an active user interface to

various destinations.

Input Data action command

The Input Data action command displays an active user interface dialog which

allows the user to enter a numeric value and store that value to one of several

destinations such as bankroll, a roulette layout or a data record.

The format is: Input Data T D where T is text information enclosed in quotation

marks “” and D the destination that is a data record which contains a numeric data

value. This command is written like this:

 Input Data ñEnter your bankrollò to Record ñbankrollò Data

Here is it shown with RX Scripting within a system:

System ñmy systemò

Method ñmain"

Begin

 Whil e Starting a New Session

 Begin

 Input Data " Enter your starting Bankroll "

 to Bankroll

 End

End

Below is the result from the Input Data action command with RX Scripting. After

the user clicks on the Ok button, the value (in this case 100) is stored to the internal

variable, Bankroll and then display on the main screen as noted on the right image.

Working with Action Commands Chapter 3

38

Input Dropdown action command

The Input Dropdown action command displays an active user interface dialog

which allows the user to select from a list of choices and assigned its numeric index

(value) to one of several destinations such as bankroll, a roulette layout(s) or a data

record. The format is: Input Dropdown T D where T is text information enclosed

in quotation marks “” and D the destination that is a data record which contains a

numeric data value. This command is written like this:

 Input Dropdown ñChoose 1 bet option

 1:=5 units

 2:=10 units

 3:=20 units ò to Record ñbet amount ò Data

Note that the different dropdown selections are set by using the n:= symbol before

the name of the selection. The n is the numeric value that will be stored in the data

contents of a data record. Here is it shown with RX Scripting within a system.

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Input Dropdown

 " What Table layout do you want to use?

 1:= American Layout

 2:= European Layout "

 to Record "Table" Data

 If Record "Table" Data = 1 Begin

 Load Double Wheel

 End

 Else Begin

 Load Single Wheel

 End

 End

End

Below is the result from the Input Dropdown action command with RX Scripting

from the previous section. After the user clicks on the Ok button, the numeric value

of 2 (for example, if European Layout was selected) was stored in the data record

Table. Several condition statements were performed to test the value stored in the

data record Table. In this example if European Layout was selected from the choice

list, the system loaded the single zero wheel as noted on the right image.

Working with Action Commands Chapter 3

39

Display action command

The Display action command displays an active user interface dialog that displays

only text information. For example, you may want to display information when your

session has ended.

The format is: Display T where T is text information enclosed in quotation marks

“”. This command is written like this:

 Display ñMy cool systemò

Here is it shown with RX Scripting within a system:

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Display

 " Playing Roulette as a Business

 A Professional's Guide to Beating the Wheel

 By R. J. Smart "

 End

End

Below is the result from the Display action command with RX Scripting from the

previous section. As noted in the script example, I am displaying text information at

the start of a new session about the system that I planned on running with Roulette

Xtreme. When displaying multiple lines, you type the entire text between quotation

marks and place them on different lines to separate them as noted in the example

below.

Working with Action Commands Chapter 3

40

Ask action command

The Ask action command displays an active user interface dialog with two buttons:

Yes which is True and No which is False. The result of clicking one of the two

buttons will be stored in an internal variable called answer which then can be later

referenced in a condition statement using the Last Answer identifier.

The format is: Ask T where T is text information enclosed in quotation marks “”.e

destination. This command is written like this:

 Ask ñDo you want to quit?ò

Here is it shown with RX Scripting within a system.

System ñmy systemò

Method ñmain"

Begin

 If Bankroll < 100

 Begin

 Ask " Do want to play another session?"

 If the Last Answer is No then

 Begin

 Stop Session

 End

 End

End

Below is the result from the Ask action command with RX Scripting. After the user

clicks either the Yes or No button, the value is stored in an internal variable called

Answer. Later in the program, you can reference this variable by using a condition

state with the Last Answer identifier as noted in the script example. During your

session, the Answer variable will always contain that last Yes No selection from the

Ask action command until either a new session is initialized or you use the Clear

Last Answer action command.

Working with Action Commands Chapter 3

41

Assign Action

Assign action commands provide the ability to assign values to various destinations

such as a data record, copy one data record to another, capture spins that have

occurred, assigned values to internal variables like Bankroll or change the way

Roulette Xtreme functions like loading a table wheel and setting the en prison rule.

Assign action commands that alter Roulette Xtreme

The next set of action commands are used to alter Roulette Xtreme when starting a

new session or during a session run.

Apply En Prison action command

The Apply En Prison action command applies the En Prison rule. This command

overrides the En Prison option that is located in the betting options screen from the

Roulette Xtreme software. The En Prison rule applies mostly to the single zero wheel

and lately some on-line casinos offer this for the double zero as well. So the rule will

work for both wheels when using the Roulette Xtreme software.

The way this rule works is when the En Prison rule is applied, and whenever the last

number that appeared is 0 (or 00 for some on-line casinos), a unit bet that has been

placed on an even chance layout is held over (imprisoned) for the next spin. If the

next spin is another 0 or 00, then the bet placed is lost.

The example below shows you how to code the En Prison rule with RX Scripting:

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Apply En Prison rule

 End

End

You can also manually set the En Prison rule under the Betting Options screen with

the Roulette Xtreme software as noted below.

42

Apply Le Partage action command

The Apply Le Partage action command applies the Le Partage rule. This

command overrides the Le Partage option that is located in the betting options

screen from the Roulette Xtreme software. The Le Partage rule applies mostly to the

single zero wheel and lately some on-line casinos offer this for the double zero as

well. So the rule will work for both wheels when using the Roulette Xtreme software.

The way this rule works is when the Le Partage rule is applied, and whenever the last

number that appeared is 0 (or 00 for some on-line casinos), you will lose one-half of

your unit bet that has been placed on an even chance layout is lost.

The example below shows you how to code the Le Partage rule with RX Scripting:

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Apply Le Partage rule

 End

End

You can also manually set the Le Partage rule under the Betting Options screen with

the Roulette Xtreme software as noted below.

Working with Action Commands Chapter 3

43

Load Double Wheel action command

The Load Double Wheel action command loads the double wheel table layout in

Roulette Xtreme. This command overrides the Layout Type option from the Options

menu on the main screen of the Roulette Xtreme software.

The example below shows you how to code loading the double wheel table with RX

Scripting:

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Load Double Wheel table

 End

End

The result from this command is shown on the left image below. The right image

shows that you can also manually load the double wheel table from the Layout Type

option under the Options menu from the main screen of the Roulette Xtreme

software.

Working with Action Commands Chapter 3

44

Load Single Wheel action command

The Load Single Wheel action command loads the single wheel table layout in

Roulette Xtreme. This command overrides the Layout Type option from the Options

menu on the main screen of the Roulette Xtreme software.

The example below shows you how to code loading the single wheel table with RX

Scripting:

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Load Single Wheel table

 End

End

The result from this command is shown on the left image below. The right image

shows that you can also manually load the single wheel table from the Layout Type

option under the Options menu from the main screen of the Roulette Xtreme

software.

Working with Action Commands Chapter 3

45

Load No Zero Wheel action command

The Load No Zero Wheel action command loads the no-zero wheel table layout in

Roulette Xtreme. This command overrides the Layout Type option from the Options

menu on the main screen of the Roulette Xtreme software. There are some on-line

casinos that have roulette tables without the zero.

The example below shows you how to code loading the no zero wheel table with RX

Scripting:

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Load No Zero Wheel table

 End

End

The result from this command is shown on the left image below. The right image

shows that you can also manually load the no-zero wheel table from the Layout Type

option under the Options menu from the main screen of the Roulette Xtreme

software.

Working with Action Commands Chapter 3

46

Stop Session action command

The Stop Session action command will cause the designed system to stop

processing spins and halt the program. This is a great way to stop a session after

you have reached a certain bankroll win or loss goal. You usually place this action

command within a condition command so it will only execute when a certain

condition or user prompt occurs.

The example below shows you how to code with RX Scripting. The action command

is performed only after the user answer No to the Ask user prompt.

System ñmy systemò

Method ñmain"

Begin

 If Bankroll < 50

 Begin

 Ask " Do want to play another session? "

 If the Last Answer is No then

 Begin

 Stop Session

 End

 End

End

The result from this command is shown below. Notice the word End Session under

the layout column. This indicates that your system will stop processing. The only

way to reset is to start a new session.

Working with Action Commands Chapter 3

47

Assign action commands that copy data

There are action commands that copy roulette layouts to data records for the

purpose of placing bets or analyzing patterns. One of the best examples I can give is

copying the last number that has appeared or its family member (i.e. last split, last

line, last dozen) to a data record. When you copy information to data records, you

can then review them during your system to place bets, change progression amounts

or test for certain conditions. You can also duplicate an existing data record to

another data record of a different name.

Copy action command

This action command copies any roulette layout either directly or from a data record

to a destination data record. The format is: Copy S D where S is the source and D

the destination. The source S can either be:

¶ any valid roulette layout (i.e. Number 13, Number 0, 1st Dozen, Red,

Odd)

¶ the layout part of a data record: Record “source” Layout

The destination D is the layout part of a data record: Record “destination” Layout.

The following script shows some examples. The first line will copy the 1st dozen

roulette layout to the layout contents of data record dozen 1 and the second line will

copy the layout contents of data record last to the layout contents of data record

number.

Copy 1st Dozen to Record " dozen 1 " Layout

Copy Record ñlastò Layout to Record ñnumberò Layout

The following system shows an example of how to use the Copy action command.

The 1st dozen roulette layout is copied to a data record dozen 1 during the system

initialization. For every spin, the system checks to see if the 1st Dozen stored in the

data record dozen 1 has not appeared for 3 times in a row. If this condition is true,

then the system will place a 5 unit bet on the 1st dozen.

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Copy 1st Dozen to Record ñdozen 1 ò Layout

 End

 While on Each Spin

 Begin

 If Record ñdozen 1 ò Layout has Not Hit 3 times

 Begin

 Put 5 units on Record ñdozen 1 ò Layout

 End

 End

End

Working with Action Commands Chapter 3

48

Copy Last action command

This action command copies the last roulette layout or the last even chance pair that

has appeared to a destination data record. The format is: Copy Last S D where S

is the source and D the destination. The source S can either be:

¶ the last roulette layout (i.e. last Split, last Number, last Dozen)

¶ the last even chance pair (i.e. last Even-Odd, last Red-Black, last High-

Low)

The destination D is the layout contents of a data record: Record “destination”

Layout.

The following script shows some examples. The first line will copy the last straight-

up number that has appeared to the layout contents of data record last number and

the second line will copy the last even chance pair of red/black that has appeared to

the layout contents of data record last red/black.

Copy Last Number to Record " last number " Layout

Copy Last Red - Black to Record ñlast red/black ò Layout

The following system shows an example of how to use the Copy Last action

command. The last even chance pair of red/black that has appeared is copied to the

layout contents of data record last red/black for every spin. Then the system will

place a 5 unit bet on that even chance pair which could either be red or black. This

type of betting system is known as follow the last color bet.

System ñmy systemò

Method ñmain"

Begin

 While on Each Spin

 Begin

 Copy Last Red - Black to Record " last red/black " Layout

 Put 5 units on Record " last red/black " Layout

 End

End

Working with Action Commands Chapter 3

49

Copy List action command

This action command creates a list of roulette layouts to a destination data record.

The purpose of this action command is to allow you to place bets on a set of roulette

layouts all at once. For example: if I want to place bets on the roulette layouts

Number 19, Number 32, Red, Line 1-6 and Column A, I can do that by creating a list

of these layouts and assign them to the layout contents of a data record. Then by

using the Put action command, I can place bets on all of these layouts with a single

action command.

The format is: Copy List [S] D where [S] is the source and D the destination. The

source [S] is a list of roulette layouts enclosed in brackets []. The destination D is

the layout contents of a data record: Record “destination” Layout that contains the

list from [S] separated by commas. Example: [Split(11-12), 19, 21, Split(29-32)]

The following script shows an example of creating a list of several roulette layouts to

a data record numbers.

Copy List [Split(11 - 12) , 19, 21 , Split(29 - 32)]

 to Record "numbers" Layout

To use the example above, I will create a simple system that demonstrates how to

use to use the Copy List action command. The roulette layouts, split 11-12, split

28-32, number 19 and number 21 are copied to the layout contents of data record

numbers to create a list during the system initialization. On every spin, the system

will place a 1 unit bet on the list stored in the layout contents of data record

numbers. This is an easy way to place bets on multiple numbers at the same time.

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Copy List [Split(11 - 12) , 19, 21 , Split(29 - 32)]

 to Record "numbers" Layout

 End

 While on Each Spin

 Begin

 Put 1 units on Record " numbers " Layout List

 End

End

When you copy information to data records, you can then review them during your

system to place bets, change progression amounts, test for certain conditions and so

on.

Working with Action Commands Chapter 3

50

Copy Neighbors action command

This action command copies the neighboring straight-up numbers from the

referenced straight-up number. The quantity of neighboring numbers copied is

determine by the Neighbor Count action support identifier or by setting the

Neighbors field on the main screen of Roulette Xtreme.

For example: I want to copy the neighboring numbers of Number 7. I have already

set the neighbor count to 4 and therefore, I expect to copy 4 numbers on each side

of Number 7 to the layout contents of a data record. Review the linear subset of the

single roulette wheel below.

31, 9, 22, 18, 29, 7, 28, 12, 35, 3, 26

As you can see there are 4 numbers on each side of 7 that will be copied from this

action command: 9, 22, 18, 29, 28, 12, 35 and 3. By using the Put action

command, I can place bets on these number with a single action command. The

format is: Copy Neighbors N D where N is the referenced straight-up number and

D the destination. The referenced straight-up number N can either be:

¶ any straight-up roulette number (i.e. Number 1, Number 32, Number 0)

¶ the layout contents of a data record: Record “number” Layout. The

contents must only be a straight-up number.

The destination D is the layout contents of a data record: Record “destination”

Layout.

The following script shows an example of creating a list of several roulette layouts to

a data record numbers.

Copy Neighbors of Number 7 to Record "numbers" Layout

To use the example above, I will create a simple system that demonstrates how to

use to use the Copy Neighbors action command. During system initialization, I set

the neighbor count to 3 and performed the action command to copy neighboring

numbers of Number 32 to the layout contents of data record neighbors. Then on

every spin, the system will place a 1 unit bet on the list stored in the layout contents

of data record neighbors.

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Put 3 on Neighbor Count

 Copy Neighbors of Number 32

 to Record " neighbors " Layout

 End

 While on Each Spin

 Begin

 Put 1 units on Record " neighbors " Layout List

 End

End

Working with Action Commands Chapter 3

51

Duplicate action command

This action command copies the entire contents of a data record to another data

record. Both the numeric data and layout contents are copied. This is a great way

to temporary store information of a data record. Then at some other time, you can

access the temporary data record for some use.

The format is: Duplicate R1 R2 where R1 is the entire data record: Record

“record 1” and R2 is the entire destination of a data record: Record “record 2”.

The following script shows an example of copying one data record to another.

Duplicate Record ñrecord 1 ò to Record " record 2 "

To use the example above, I will create a simple system that demonstrates how to

use to use the Duplicate action command. During system initialization, I create a

data record progression and set the data contents to 1 as my starting bet. Then I

copied the data record progression to a temporary record called temp. During the

system, I checked to see if any number bet has won (in other words, any of the

numbers that I placed a bet on) and if so, I would copy the data record temp back

to the data record progression (what this did was reset my progression count)

because anytime my numbers lost, I added 1 unit to my progression therefore I

needed to reset my progression after a win.

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Put 1 on Record " Progression " Data

 Duplicate Record " Progression " to Record " temp "

 Copy Neighbors of Number 21

 to Record " neighbors " Layout

 Put 100% of Record " Progression " Data

 to Record " neighbors " Layout List

 Exit

 End

 If A ny Number Bet has Won Each time

 Begin

 Duplicate Record " temp " to Record " Progression "

 End

 Else

 Begin

 Add 1 to Record " Progression " Data

 End

 Copy Neighbors of Number 21 to Record " neighbors " Layout

 Put 100% of Record " Progression " Data

 to Record " neighbors " Layout List

End

Working with Action Commands Chapter 3

52

Miscellaneous Assign action commands

There are other action commands that perform various functions that I will discuss

here.

Track Last action command

I consider this action command most important because it allows you to track the

last numbers, even chances, dozens, or any other roulette groups for a certain

amount of spins. For example: you can track the last spins (numbers) that have

appeared for let say, 37 spins. The results are stored in the layout contents of a

data record in a list format like (number 1, number 2, number 3, number 4). From

this data record, you can inspect the layout contents and perform some action or

check for repeating patterns.

The format is: Track Last S N D where S is the source, N is the maximum number

to tract and D the destination where the last source layout is stored in a list format.

The source S can either be:

¶ any valid roulette layout group (i.e. Number, Split, Corner, Street, Line,

Dozen, Column, Zero)

¶ any valid roulette even chance pairs: (Even-Odd, Odd-Even, Black-Red,

Red-Black, High-Low, Low-High)

The maximum number that is used for tracking the last numbers N can either be:

¶ a whole numeric number (i.e. 1, 37, 50, 100, not 1.5, 6.75, etc)

¶ the data contents of a data record: Record “number” Data, the data

contents must be a whole numeric number

The destination D is a list of layout contents of a data record: Record “destination”

Layout. (i.e. Red, Red, Black, Red, Black)

The following script shows some examples. The first line will track the last numbers

that have appeared within the last 37 spins and place those numbers to the layout

contents of data record last 37 in a form of a list. The second line will track the last

even chance pair of color (red/black) for the last 5 spins to the layout contents of a

data record patterns.

Track Last Number for 37 spins to Record " last 37 " Layout

Track Last Red- Black for 5 spins Record " patterns " Layout

Using the first line example above, the image below shows what happens. As you

can see the system will copy the last number to the layout contents of the data

record last 37. Notice that the entire count is 37 which is the maximum number

specified in the command. When all 37 numbers are captured, the 38 and so on

number is appended at the end of the list and the top numbers are removed thus

always keeping the last 37 numbers available for review and process by other action

commands.

Working with Action Commands Chapter 3

53

Clear action command

The Clear action command does several things.

¶ It will clear the contents of the Last Answer internal variable in the system.

The command for this is:

o Clear Last Answer

¶ It will clear the data and layout contents of an individual data record. The two

commands for this are:

o Clear Record “record name” Data – removes the numeric data

contents and resets the data index to 1.

o Clear Record “record name” Layout – removes the roulette layout

contents and resets the layout index to 1.

¶ It can also clear the data and layout contents of ALL data records in your

system. This is the quickest way to initialize your system. The command for

this is:

o Clear All Records – removes both data and layout contents of all

data records and resets their data and layout index counters to 1.

¶ If you want to clear all data records except for certain ones, then you can do

that by specifying Clear All Records Except []. The data records that you

DO NOT want to have its contents cleared are listed between the brackets []

enclosed in quotation marks separated by a comma. Example:

[“progression”, “bankroll balance”]. The system will remove either the data

or layout contents of all data records except for those between brackets. The

two commands for this are:

o Clear All Records Except [“record 1”, “record 2”] Data – removes

the data contents of ALL data records EXCEPT “name 1” and “name

2” data records.

o Clear All Records Except [“record 1”, “record 2”] Layout –

removes the layout contents of ALL layout records EXCEPT “name 1”

and “name 2” data records.

The following script shows some examples of the Clear action commands.

// clears the internal variable answer

Clear Last Answer

// clears data and layout contents of ALL data records

Clear All Records

// clears only the data contents of data record ñbankrollò

Cl ear Record ñbankroll ò Data

// clears only the layout contents of data record ñlast

roulette numberò

Clear Record ñlast roulette number ò Layout

// clears only data contents of ALL data records except those

listed between brackets []

Clear All Records Except [" progression ò, ñbankroll"] Data

Working with Action Commands Chapter 3

54

Set Max action command

The Set Max action command sets the data or layout index pointer of a data record

to the maximum number of items in its list. If there is only 1 item in the list, then

the maximum number is 1, if 2 items in the list, the maximum number is 2 and so

on. The two commands are:

¶ Set Max Record “record name” Data Index – sets the data index pointer to

the number of items in the data contents. If the content is empty, the data

index pointer is set to 0.

¶ Set Max Record “record name” Layout Index – sets the layout index

pointer to the number of items in the layout contents. If the content is

empty, the layout index pointer is set to 0.

The following script shows some examples of the Set Max action commands.

Set Max Record ñprogression ò Data Index

Set Max Record ñlast roulette number ò Layout Index

For example: review data contents of the data record progression below.

Data contents of data record “progression” = 1,2,4,6,8,16,32

By performing the action command, Set Max Record “progression” Data Index,

the Data Index pointer will be set to 7 which is the total number of items in this

list. So if I performed the action command of Add 1 to Record “progression” Data

Index, the data index pointer will be 8. Then by performing this action command

Put 64 on Record “progression” Data will append 64 to the end of the list.

A good way to use this action command is when you are trying to append items in a

list. I will create a simple system that demonstrates tracking numbers that have

repeated twice in a row. When any number repeats 2 times in a row, I set the

layout index pointer of data record tracked numbers to the maximum items in the

list. If initially the list is empty, then the layout index will be set to 0. The next

action command Add will increment the layout index by 1 thus pointing to the end of

the list. Then the following action command Copy Last will copy the last number

that has appeared (the number that has repeated twice) to the end of the list in the

data record. The last action command Put will place a 1 unit bet on the layout

contents of the numbers that have been added to the data record.

System ñmy systemò

Method ñmain"

Begin

 If Any Number has Hit 2 times

 Begin

 Set Max to Record " tracked numbers " Layout Index

 Add 1 to Record ñtracked numbers ò Layout Index

 Copy Last Number to Record " tracked numbers " Layout

 End

 Put 1 unit on Record ñtracked numbers ò Layout List

End

When you run this system, the data record tracked numbers will contain only

numbers that have repeated twice during a session.

Working with Action Commands Chapter 3

55

Set List action command

One quick way to create a data list of numbers is to use the Set List action

command. This popular command is great to create a progression list for betting.

(i.e. 5, 10, 20, 40, 80, 160, etc).

The format is: Set List [S] D where [S] is the source and D the destination. The

source [S] is a list of numeric data enclosed in brackets []. The destination D is the

data contents of a data record: Record “destination” Data that contains the list [S]

separated by commas. Example: [1, 2, 4, 6, 8, 32, 64]

The following script shows an example of creating a list of several numeric data to a

data record progression.

Set List [1,2,4,6,8,32,64] to Record "progression" Data

To use the example above, I will create a simple system that demonstrates how to

use to use the Set List action command. During system initialization, I will create a

betting progression for placing bets on Lines or double streets. On every spin, the

system will place a progression bet from the data record progression to 3 line

layouts located in layout contents of the data record lines. Prior to placing a bet,

the system will check to see if any of the line bets have won and reset the data index

pointer to 1 otherwise add 1 to the data index thus pointing to the next number in

the list. It will also check to make sure you don’t go past the maximum number in

the progression list. If so, then reset back to 1 as well.

Syste m ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Set List [1,2,4,6,8,32,64] to

 Record " progression " Data

 Copy List [Line(7 - 12),Line(16 - 21),Line(25 - 30)]

 to Record ñlines ò Layout

 End

 While on Each Spin

 Begin

 If Any Line Bet has Won Each time

 Begin

 Put 1 to Record ñprogression ò Data Index

 End

 Else

 Begin

 Add 1 to Record ñprogression ò Data Index

 If Record ñpro gression ò Data Index > 7

 Begin

 Put 1 to Record ñprogression ò Data Index

 End

 End

 Put 1 00% of Record ñprogressionò Data to

 Record " lines " Layout List

 End

End

Working with Action Commands Chapter 3

56

Generate Random Number action command

This action command was added incase someone wanted to experiment with random

numbers from a range of n1 to n2. You may want to make a random bet on an

even chance layout or use a random number to determine how many spins to track

before placing a bet of each session.

The format is: Generate Random Number N1 N2 D where N1 is the lowest

random number and N2 is the highest random number. D the destination where the

random number generated between N1 and N2 is stored. So the N1 and N2 format

is as follows:

¶ N1 – lowest random number (i.e. 1, 5, 10, etc). Must be lower than N2

¶ N2 – highest random number (i.e. 5, 10, 20). Must be higher than N1

The destination D can either be:

¶ Bankroll internal variable, All Bets (every layout on the table), All Outside

(every layout on the outside), All Inside (all straight-up numbers), Record

“record name” Data (data contents of a data record)

¶ Any individual roulette layout (i.e. Number 19, Line (7-12), etc).

The following script shows an example of generating a random number between 1

and 20 and storing that number into the data contents of data record wait count.

Generate Random Number from 1 to 20 into Record " wait count "

Data

The following system demonstrates how to use the Generate Random Number

action command. On every spin, the system will generate a random number

between 5 and 25 and place that bet to the 2nd dozen.

System ñmy systemò

Method ñmain"

Begin

 While on Each Spin

 Begin

 Generate Random Number from 5 to 25 into 2nd Dozen

 End

End

The image below is a sample result from the system above. Note that numeric value

of 21 was randomly generated between the numbers 5 and 25.

Working with Action Commands Chapter 3

57

Assign action command for data flags

The next two action commands pertain to data flags instead of data records.

Set Flag action command

This action command sets the Boolean value stored in a data flag to either true or

false.

The format is: Set Flag “flag name” True/False. Where “flag name” is the unique

name of the data flag and True/False is the Boolean condition. You can only specify

True or False but not both on the same action command line. The following script

is an example of setting a data flag called ready to bet to False.

Set Flag ñready to bet ò to False

The following system demonstrates how to use the Set Flag action command.

During system initialization, the data flag ready to bet is set to false since we don’t

want to place any bets at this time. On every spin, the system tests to see if the

even chance of black has repeated 5 times in a row and if so, set the data flag ready

to bet to true to signal the system to place a bet on red hoping the series streak has

ended for black.

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Set Flag ñr eady to bet ò to False

 End

 While on Each Spin

 Begin

 If Black has Hit 5 times in a row

 Begin

 Set Flag ñready to bet ò to True

 End

 If Flag ñready to bet ò is True

 Begin

 Put 5 units on Red

 End

 End

End

Working with Action Commands Chapter 3

58

Reset All Flags action command

This simple action command will reset the Boolean value stored in all data flags that

are in the system to either true or false.

The format is: Reset All Flags True/False. Where True/False is the Boolean

condition. You can only specify True or False but not both on the same action

command line. The following script is an example of setting all data flags to false.

Reset All Flags to False

The following system demonstrates how to use the Reset All Flags action

command. Expanding on the previous system that I created from the Set Flag

section, during system initialization, the data flag ready to bet is set to false since

we don’t want to place any bets at this time. On every spin before testing to see if

black has repeated for 5 times in a row, I check to see if the data flag ready to bet

is set to true and at the same time check to see if the even chance of red has lost a

bet 3 times in a row. If both of these conditions are true, then I reset all of the flags

to false and start looking for another series streak of black repeating 5 times in a

row.

System ñmy systemò

Method ñmain"

Begin

 While Starting a New Session

 Begin

 Set Flag ñready to bet ò to False

 End

 While on Each Spin

 Begin

 If Flag ñready to bet ò is True

 And Red has Lost 3 times in a row

 Begin

 Reset All Flags to False

 End

 If Black has Hit 5 times in a row

 Begin

 Set Flag ñready to bet ò t o True

 End

 If Flag ñready to bet ò is True

 Begin

 Put 5 units on Red

 End

 End

End

59

WORKING WITH

ROULETTE
LAYOUTS

4

There are so many ways to place bets on a roulette board that I figure I need to

discuss the different options and their proper syntax when creating a system using RX

Scripting. Now, I assume you already know how to play roulette and what the

payouts are for each layout so I won’t go into those details. If you don’t know, there

are many books on roulette that discuss the different combinations and payouts.

Remember, the beauty of RX Scripting is the almost English like sentence when

designing a system. Therefore, when referencing a roulette layout, you refer to it by

its name (i.e. Number 1, Number 19, and so on).

However, there are some layouts that are complex and the way you refer to them

when playing a roulette game may be different than creating a system. For example:

I want to place a corner bet of 1 unit on 13, 14, 16, and 17 as shown in image

example below.

To write that in RX Scripting as a system, you would do the following:

System ñmy systemò

Method ñmain"

Begin

 Put 1 unit on Corner(13 - 17)

End

If you know how to place corner bets on an actual roulette game, then clearly the

above syntax for the corner bet is easy to understand. You also use the same format

when writing a condition statement as well as noted in the next script example.

System ñmy systemò

// if corner 13,14,16,17 has won a bet, add 1 unit

Method ñmain"

Begin

 If Corner(13 - 17) has Won Each time

 Begin

 Add 1 unit to Corner(13 - 17)

 End

End

In the next few pages, I’ll go over the different roulette layouts and their proper

syntax when creating a system with RX Scripting.

Working with Roulette Layouts Chapter 4

60

Inside Layouts

Inside layouts refer to all layouts where bets can be placed on the field of numbers

in the center portion of the roulette table.

Individual Straight-up Numbers

As shown in the table below, the individual numbers are represented by the following

syntax Number 21 which refers to the number 21 on the roulette table. Likewise,

Number 00 represents the double zero on the American roulette table.

Roulette layout Their meaning

Number 1 é Number

36

The individual number on the table from

1 to 36.

Number 0 The in dividual single zero on the table

Number 00 The individual double zero on the table

When referencing the individual numbers, you always prefix the number by the

actual word Number. Example, to place a bet on number 36, enter the following:

System ñmy systemò

Method ñmain"

Begin

 Put 1 unit on Number 36

End

There are two exceptions to this. When referencing the list identifier with either the

action command of List and Copy List, or the condition command List. Between

the brackets, you can omit the word Number as this is optional. Script below shows

the alternative method for these two commands.

System ñmy systemò

Method ñmain"

Begin

 When Starting a New Session

 Begin

 Copy List [21, 13, 19, 32, 00, 18] to

 Record ñnumbersò Layout

 End

 If List [21, 00, 6, 36] have Not Hit Each time

 Begin

 Put 1 units on Record ñnumbersò Layout List

 Put 2 units on List [21, 00, 6, 36]

 End

End

Working with Roulette Layouts Chapter 4

61

Split

Split layouts are used when referencing any number pairs that are adjacent to each

other on the roulette table. Since there are many split combinations, this book

divides the split layouts into two categories: horizontal split and vertical split

Horizontal Split

The horizontal split layouts are numbers that are side by side of each other as noted

on the roulette picture from the Roulette Xtreme software. The table below shows

all the possible horizontal roulette split layouts and their corresponding location # on

the roulette board.

Horizontal

Split layout
Horizo ntal

Split layout

Horizontal

Split layout

Split(1 - 4) 1 Split(2 - 5) 12 Split(3 - 6) 23

Split(4 - 7) 2 Split(5 - 8) 13 Split(6 - 9) 24

Split(7 - 10) 3 Split(8 - 11) 14 Split(9 - 12) 25

Split(10 - 13) 4 Split(11 - 14) 15 Split(12 - 15) 26

Split(13 - 16) 5 Split(14 - 17) 16 Split(15 - 18) 27

Split(16 - 19) 6 Split(17 - 20) 17 Split(18 - 21) 28

Split(19 - 22) 7 Split(20 - 23) 18 Split(21 - 24) 29

Split(22 - 25) 8 Split(23 - 26) 19 Split(24 - 27) 30

Split(25 - 28) 9 Split(26 - 29) 20 Split(27 - 30) 31

Split(28 - 31) 10 Split(29 - 32) 21 Split(30 - 33) 32

Split(31 - 34) 11 Split(32 - 35) 22 Split(33 - 36) 33

When referencing the horizontal split layout, you type the word Split followed by in

parenthesis () the 2 numbers that are back-to-back together with a hyphen - in

between the numbers, (i.e. 10-13). For example to place a bet on split 17,20, enter

the following:

System ñmy systemò

Method ñmain"

Begin

 Put 1 unit on Split(17 - 20)

End

As noted in the table above, split 17, 20 is represented by the # 17 on the roulette

table image.

Working with Roulette Layouts Chapter 4

62

Vertical Split

The vertical split layouts are numbers that are stack on top of each other as noted on

the roulette picture from the Roulette Xtreme software. The table below shows all the

possible vertical split layouts and their corresponding location # on the roulette

board.

Vertical Split layout # Vertical Split layout #

Split(1 - 2) 1 Split(2 - 3) 13

Split(4 - 5) 2 Split(5 - 6) 14

Split(7 - 8) 3 Split(8 - 9) 15

Split(10 - 11) 4 Split(11 - 12) 16

Split(13 - 14) 5 Split(14 - 15) 17

Split(16 - 17) 6 Split(17 - 18) 18

Split(19 - 20) 7 Spl it(20 - 21) 19

Split(22 - 23) 8 Split(23 - 24) 20

Split(25 - 26) 9 Split(26 - 27) 21

Split(28 - 29) 10 Split(29 - 30) 22

Split(31 - 32) 11 Split(32 - 33) 23

Split(34 - 35) 12 Split(35 - 36) 24

When referencing the vertical split layout, you type the word Split followed by in

parenthesis () the 2 numbers that are back-to-back together with a hyphen - in

between the numbers, (i.e. 16-17). For example to place a bet on split 26,27, enter

the following:

System ñmy systemò

Method ñmain"

Begin

 Put 1 unit on Split(26 - 27)

End

As noted in the table above, split 26, 27 is represented by the # 21 on the roulette

table image.

Working with Roulette Layouts Chapter 4

63

Street

Street layouts are used when referencing any three-number combination on any of

the three-number rows on the roulette table. The table below shows all the possible

street layouts and their corresponding location # on the roulette board.

Street layout # Street layout # Street layout #

Street(1 - 3) 1 Street(13 - 15) 5 Street(25 - 27) 9

Street(4 - 6) 2 Street(16 - 18) 6 Street(28 - 30) 10

Street(7 - 9) 3 Street(19 - 21) 7 Street(31 - 33) 11

Street(10 - 12) 4 Street(22 - 24) 8 Street(34 - 36) 12

When referencing the street layout, you type the word Street followed by in

parenthesis () the 2 numbers that are the lowest and highest number of the three-

number row together with a hyphen - in between the numbers, (i.e. 1-3). For

example to place a bet on street 10,11,12, enter the following:

System ñmy systemò

Method ñmain"

Begin

 Put 1 unit on Street(1 0- 12)

End

As noted in the above table, street 10, 11, 12 is represented by the # 4 on the

roulette table image.

Below is an example of checking if street 19, 20, 21 has appeared each time and if

so, place bets on this street and both sides of the street.

System ñmy systemò

Method ñmain"

Begin

 If Street(1 9- 21) has Hit Each time

 Begin

 Put 1 unit on List [16, 17, 18, 22, 23, 24]

 Put 1 unit on Street(19 - 21)

 End

End

Working with Roulette Layouts Chapter 4

64

Line (Double Street)

Line layouts are used when referencing any six-number combination on two adjacent

rows of the roulette table. This is also known as the Double Street. The table below

shows all the possible line layouts and their corresponding location # on the roulette

board.

Line layout # Line layout #

Line(1 - 6) 1 Line(19 - 24) 7

Line(4 - 9) 2 Line(22 - 27) 8

Line(7 - 12) 3 Line(25 - 30) 9

Line(10 - 15) 4 Line(28 - 33) 10

Line(13 - 18) 5 Line(31 - 36) 11

Line(16 - 21) 6

When referencing the line layout, you type the word Line followed by in parenthesis

() the 2 numbers that are the lowest and highest number of the six-number

combination together with a hyphen - in between the numbers, (i.e. 1:6). For

example to place a bet on line 19,20,21,22,23,24, enter the following:

System ñmy systemò

Method ñmain"

Begin

 Put 1 unit on Line(19 - 24)

End

As noted in the above table, line 19, 20, 21, 22, 23, 24 is represented by the # 7 on

the roulette table image. The next script example shows how to check to see if any

line bet has won and if so, reset to 1 unit otherwise add 1 unit to three lines of 7-12,

16-21, and 25-30.

System ñmy systemò

Method ñmain"

Begin

 If Any Line Bet won each

 Begin

 Put 1 on List [Line(7 - 12), Line(16 - 21), Line(25 - 30)]

 End

 Else

 Begin

 Add 1 to List [Line(7 - 12), Line(16 - 21), Line(25 - 30)]

 End

End

Working with Roulette Layouts Chapter 4

65

Corner

Corner layouts are used when referencing any four-number combination on any

square block of four numbers on the roulette table. The table below shows all the

possible corner layouts and their corresponding location # on the roulette board.

Corner layout # Corn er layout #

Corner(1 : 5) 1 Corner(2 : 6) 12

Corner(4 : 8) 2 Corner(5 : 9) 13

Corner(7 : 11) 3 Corner(8 : 12) 14

Corner(10 : 14) 4 Corner(11 : 15) 15

Corner(13 : 17) 5 Corner(14 : 18) 16

Corner(16 : 20) 6 Corner(17 : 21) 17

Corner(19 : 23) 7 Corner(20 : 24) 18

Corner(22 : 26) 8 Corner(23 : 27) 19

Corner(25 : 29) 9 Corner(26 : 30) 20

Corner(28 : 32) 10 Corner(29 : 33) 21

Corner(31 : 35) 11 Corner(32 : 36) 22

When referencing the corner layout, you type the word Corner followed by in

parenthesis () the 2 numbers that are the lowest and highest number of the four-

number square together with a colon : in between the numbers, (i.e. 1:5). For

example to place a bet on corner 14,15,17,18, enter the following:

System ñmy systemò

Method ñmain"

Begin

 Put 1 unit on Corner(14 : 18)

End

As noted in the previous table, corner 14,15,17,18 is represented by the # 16 on the

roulette table image.

Working with Roulette Layouts Chapter 4

66

Outside Layouts

Outside layouts refers to all layouts where bets can be placed that are outside of the

main field of numbers of the roulette table.

Dozen

Dozen layouts are outside layouts that reference a set of twelve numbers on the

roulette table. The table below shows all the possible dozen layouts and their

corresponding location # on the roulette board.

Dozen

layout
Set of 12 Roulette Numbers #

1st Dozen 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 1

2nd Dozen 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 2

3rd Dozen 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 3

On the Roulette Xtreme image from table above, the 1st 12 section represents

numbers from 1 to 12, the 2nd 12 section represents numbers from 13 to 24 and the

3rd 12 section represents numbers from 25 to 36. When referencing any one of the

dozen layouts with RX Scripting, you type the dozen # such as 1st, 2nd, or 3rd

followed by the word Dozen. For example to place a bet on 2nd dozen which are

numbers from 13 to 24, enter the following:

System ñmy systemò

Method ñmain"

Begin

 Put 1 unit on 2nd Dozen

End

As noted in above table, 2nd dozen of numbers 13 to 24 is indicated by the #2 on the

roulette table image. Below is an example of checking if the 2nd dozen has appeared

each time and if so, place bets on the other two dozens.

System ñmy systemò

Method ñmain"

Begin

 If 2nd Dozen has Hit Each time

 Begin

 Put 5 units on List [1st Dozen, 3rd Dozen]

 End

End

Working with Roulette Layouts Chapter 4

67

Column

Column layout identifiers are outside layouts that reference a set of twelve column

numbers spanning from left to right on the roulette table. The table below shows all

the possible column layouts and their corresponding location # on the roulette board.

Column

layout
Set of 12 Roulette Numbers #

Column A 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34 1

Column B 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35 2

Column C 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 , 33, 36 3

On the Roulette Xtreme image from the above, the numbers 1, 4, 7, 10, 13, 16, 19,

22, 25, 28, 31, 34 represents column A, the numbers 2, 5, 8, 11, 14, 17, 20, 23, 26,

29, 32, 35 represents column B and the numbers 3, 6, 9, 12, 15, 18, 21, 24, 27, 30,

33, 36 represents column C. When referencing any one of the column layouts with

RX Scripting, you type the word Column followed by the letter A, B, or C.

For example to place a bet on Column C which are numbers 3, 6, 9, 12, 15, 18, 21,

24, 27, 30, 33, 36, enter the following:

System ñmy systemò

Method ñmain"

Begin

 Put 1 unit on Column C

End

As noted in above table, Column C is indicated by the # 3 on the roulette table

image.

Below is an example of checking if the column B has appeared each time and if so,

place bets on the other two columns and to the 1st and 2nd dozens.

System ñmy systemò

Method ñmain"

Begin

 If 2nd Dozen has Hit Each time

 Begin

 Put 5 units on List [1st Dozen, 2nd Dozen]

 Put 5 units on List [Colu mn A, Column B]

 End

End

Working with Roulette Layouts Chapter 4

68

Even Chance

There are 6 even chance bets that consists of 18 roulette numbers group together.

The table below shows all the possible even chance layouts and their corresponding

location # on the roulette board. When placing a bet on an even change layout, you

place it on one of the #s listed in table below of the roulette image.

Even

Chance

layout

Set of 18 Roulette Numbers #

Low 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 1

Even
2,4,6,8,10,12,14,16,18,20,22,24,26,28 ,30,32,

34,36
2

Red 1,3,5,7,9,12,14,16,18,19,21,23,25,27,30,32,34,

36
3

Black
2,4,6,8,10,11,13,15,17,20,22,24,26,29,28,31,

33,35
4

Odd
1,3,5,7, 9, 11,13,15,17,19,21,23,25,27,29,31,33,

35
5

High
19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,3

4,35,36
6

To place a bet on all low numbers which are from 1 to 18, you place your unit on the

section marked 1 to 18. When creating a system with RX Scripting, you type the

word Low which tells the system that you are referring to the low numbers of 1 to 18

as shown in the script below.

System ñmy systemò

Method ñmain"

Begin

 Put 1 unit on Low

End

The same is true for the high numbers of 19 to 36. The RX Scripting identifier word is

High which tells the system that you are referring to the high numbers of 19 to 36.

System ñmy systemò

Method ñmain"

Begin

 Put 1 unit on High

End

Working with Roulette Layouts Chapter 4

69

Using Layouts with Commands

Now that I have discussed the various roulette layouts and their proper syntax with

RX Scripting, I will give some examples of their use with action and condition

commands.

Action Command

I will write a script using only the action commands to place a 1 unit bet on the

following layouts: number 19, single 0, 3rd dozen, even chance odd, corner 23,24,26

and 27, line (or double street) 4 to 9, street 34 to 36 and split 2,5. The script below

shows the proper way to write the roulette layouts.

System ñmy systemò

{

to make a 1 unit bet of certain layouts

{

Method ñmainò

Begin

 Put 1 unit on Number 19

 Put 1 unit on Number 0

 Put 1 unit on 3rd Doze n

 Put 1 unit on Odd

 Put 1 unit on Corner(23:27)

 Put 1 unit on Line(4 - 9)

 Put 1 unit on Street(34 - 36)

 Put 1 unit on Split(2 - 5)

End

The results are shown on the roulette image below.

The next script shows an alternate way to place bets on the same roulette layouts as

noted on the previous image by using the List identifier. Note the omission of the

layout identifier Number from the 19 and 0 as it is optional.

System ñmy systemò

{

to make a 1 unit bet of certain layouts

}

Method ñmainò

Begin

 Put 1 unit on List [19, 0, 3rd Dozen, Odd,

 Corner(23:27), Line(4 - 9), Street(34 - 36),

 Split(2 - 5)]

End

Working with Roulette Layouts Chapter 4

70

Condition Command

When writing a condition command one must think of what type of event to look for

before performing some action command. To do this, I must jot down what I want to

do before transferring it to RX Scripting. The system I am creating is based on this

example:

1. When any dozen has repeated 3 times in a row

2. Place a 5 unit bet on the other two dozens

I have my system jotted down on paper or in my thoughts, so I will create the

system using RX Scripting as shown in the following script.

System ñmy systemò

{

When a dozen has repeated 3 times in a row, place a bet on

the other two dozens

}

Method ñmainò

Begin

 If 1st Dozen has Hit 3 times in a row

 Begin

 Put 5 units on List [2nd Dozen , 3rd Dozen]

 End

 If 2nd Dozen has Hit 3 times in a row

 Begin

 Put 5 units on List [1st Dozen , 3 rd Dozen]

 End

 If 3rd Dozen has Hit 3 times in a row

 Begin

 Put 5 units on List [1st Dozen , 2nd Dozen]

 End

End

The system consists of 3 different condition events. First, I checked to see if the 1st

dozen has appeared for 3 times in row and if this happened, place a 5 unit bet on the

other two dozens. The same format is used for the other two dozens as well. From

the marquee board on the image below, the 3rd Dozen (numbers 27, 26 and 32)

have appeared for 3 times. This caused the condition statement to evaluate as true

and the two action statements were executed which placed a 5 unit bet on the 1st

and 2nd dozens.

71

CREATING

ROULETTE

SYSTEMS
5

Ok, now you have a refresher course on how to use the Action and Condition

commands with roulette layouts and data records. It is time to create some system

from the very basic to the very complex. I will provide step-by-step instructions so it

will be easy for you to follow and reproduce.

Creating Roulette Systems Chapter 5

72

Martingale System

The Martingale system is simply doubling your bet after each loss. This is used

mostly playing on the even chance layouts (red, black, odd, even, high and low) and

it is by far the most popular betting system in the world. Let’s take an example of

how this type of betting system works.

BET # UNITS BET RESULT NET GAIN

1 1 lose -1

2 2 lose -3

3 4 lose -7

4 8 lose -15

5 16 win +1

No matter what step you are when you win, you will always make a profit of 1 unit.

As you can see, it is achievable to make a profit of 1 unit by performing the doubling

of bets after each loss, however, one would need a very large bankroll to sustain such

a bad run and most casinos have table limits that prevent you from making such

large bets. Some Martingale systems have been modified to use some sort of

progression list instead of just the normal doubling up process. This will allow you to

adjust your maximum bankroll risk and also allow you to extend the possible bad

streak far out as possible. Here are some examples of a martingale progression lists:

¶ 1,2,4,8,16,32,64,128,256,512

normal list that covers 10 losses in a row, high bankroll needed

¶ 0,0,0,0,1,1,3,6,12,24,48,96,192

modified list that covers 13 loses in a row, using hypothetical and

insurance bets

¶ 0,0,0,0,1,1,3,6,12,24,48

modified list that covers 11 loses in a row, same as previous type but good

for low bankroll players.

¶ 1,2,4,2,2,4,2,3,5,2,3,6,2,4,6

modified list that covers 15 loses in a row, uses insurance bets and reduce

profits results

The Martingale system that is created in this book will use a modified progression list

which uses a combination of insurance bets and reduce profits. This will allow losing

15 times in a row before losing all of your bankroll. The total bankroll for this system

is 48 units. The system will place bets on the even chance layout of Red and the

algorithm is written like this:

When a new session is started, do this…

¶ Set the progression list to a data record

¶ Place the first initial bet on Red

On every spin, check for…

¶ On a win, reset the progression list to first step

¶ On a loss, increase to the next progression level

o Check progression level to determine if reached maximum level.

If maximum level reached, then stop session, otherwise

¶ Place another bet on Red at current progression level.

Creating Roulette Systems Chapter 5

73

Martingale system written in RX Scripting from the algorithm above.

System ñMartingaleò

{

Uses a progression betting list for even chance Red

}

Method ñmainò

Begin

 While Starting a New Session

 Begin

 Set List [1,2,4,2,2,4,2,3,5,2,3,6,2,4,6] to

 Record " progression " Data

 Put 100% of Record " progression " Data to Red

 End

 While on Each Spin

 Begin

 If Any Even Bet has Won Each time

 Begin

 Put 1 on Record " progression " Data Index

 End

 If Any Even Bet has Lost Each time

 Begin

 Add 1 to Record " progression " Data Index

 If Record " progression " Data Index >

 Record " progression " Data Count

 Begin

 Stop Session

 End

 End

 Put 100% of Record " progression " Data to Red

 End

End

With this system, you can have two options.

The first option is you can change and set your own progression list between the

brackets of the Set List action command to suite you maximum bankroll risk. The

items in the list can be of any quantity. For example, you can create a list like:

[1,2,4,8,16,32] which is considered aggressive and requires a bankroll of 63 unit or

like: [1,1,1,1,2,4,6,8,16] which is considered a low risk and requires a bankroll of 32

units. There are lots of combinations you can use for this betting system.

The second option is you can change the even chance of Red to any other even

chance layout of your choosing. All of this is done within the RX Scripting prior to

running a session.

Creating Roulette Systems Chapter 5

74

Expanding on the Martingale System

Suppose you want to be able to select what even chance layout prior to placing any

bets. The solution to this is use a dialog screen and let the user select the layout

type. The previous system will be expanded to include the ability to have the user

select a layout type using an Input Dropdown action command.

The expanded system will place bets on the even chance layout (user choice) and

the algorithm is written like this (the changes are in Italic):

When a new session is started, do this…

¶ Set the progression list to a data record

¶ Call Input routine to allow user to select layout type

¶ Place the first initial bet on data record even chance

On every spin, check for…

¶ On a win, reset the progression list to first step

¶ On a loss, increase to the next progression level

o Check progression level to determine if reached maximum

level. If maximum level reached, then stop session,

otherwise

¶ Place another bet on data record even chance at current

progression level

Method ñInputò routine hereé

o Input ñSelect even chance layout type of: (Red, Black, Odd, Even,

High, Low)

o Copy this layout type to a data record called even chance

As you can see from the algorithm above, the changes are quite minor and a new

method was created to handle the input routine. The entire system written in RX

Scripting is shown below and continued on the next page.

System ñModified Martingaleò

{

Uses a progression betting list for even chance choice s

}

Method ñmainò

Begin

 While Starting a New Session

 Begin

 Set List [1,2,4,2,2,4,2,3,5,2,3,6,2,4,6] to

 Record " progression " Data

 Call ñInput ò

 Put 100% of Record " progression " Data to

 Record ñeven chance ò Layout

 End

 While on Each Spin

 Begin

 If Any Even Bet has Won Each time

 Begin

Creating Roulette Systems Chapter 5

75

System continued from previous page

 Put 1 on Record " progression " Data Index

 End

 If Any Even Bet has Lost Each time

 Begin

 Add 1 to Record " progression " Data Index

 If Record " progression " Data Index >

 Record " progression " Data Count

 Begin

 Stop Session

 End

 End

 Put 100% of Record " progression " Data to

 Record ñeven chance ò Layout

 End

End

Method " Input "

Begin

 Input Dropdown " Select even chance layout type

 1:=Red

 2:=Black

 3:=Odd

 4:=Even

 5:=High

 6:=Low " to Record " type " Data

 If Record " type " Data = 1 then Begin

 Copy Red to Record " even chance " Layout End

 If Record " type " Data = 2 then Begin

 Copy Black to Record " even chance " Layout End

 If Record " type " Data = 3 then Begin

 Copy Odd to Record " even chance " Layout End

 If Record " type " Data = 4 then Begin

 Copy Even to Record " even chance " Layout End

 If Record " type " Dat a = 5 then Begin

 Copy High to Record " even chance " Layout End

 If Record " type " Data = 6 then Begin

 Copy Low to Record " even chance " Layout End

End

Within the method Input, the Input Dropdown action command can only stored

numeric data which is denoted by the n := choice name (i.e. 1:=Red). The n is the

numeric number that is store into a data record. So, after the user selects which

even chance layout from the dropdown list of choices, the system then needs to

perform a If…then logic condition command to determine which numeric number has

been stored. Once the logic of the condition command becomes true, the system

then copies the appropriate even chance layout to the data record even chance.

The stored layout in the data record is then used in the main method section to place

bets.

Creating Roulette Systems Chapter 5

76

D’Alembert System

The D’Alembert system is a simple betting progression system in where after each

loss, one unit is added to the next bet, and after each win, one unit is deducted from

the next bet. Usually you start with approximately 5 or 10 times the minimum bet to

all for 5 to 10 wins in a row so you don’t hit you minimum table limit too soon. Like

the Martingale system, this is used mostly playing on the even chance layouts (red,

black, odd, even, high and low). Let’s take an example of how this type of betting

system works.

BET # UNITS BET RESULT NET GAIN

1 5 lose -5

2 6 win +1

3 5 lose -4

4 6 win +2

5 5 win +7

6 4 lose +3

As you can see from the example above, there are 3 wins and 3 losses. The

mathematical formula for this is whenever the number of wins equals the number of

losses; the net gain is equal to the number of wins. However, due to the outcome of

the 0 and or 00 (for American wheels), you can average about 18 wins and 20 losses

every 38 spins. This type of system is best used on a single 0 wheel with Le Partage

or En Prison rule. The D’Alembert system that is created in this book will use the

follow the color option of red and black. In addition, the system will ask the user

for a starting bet amount but will default to. The algorithm is written like this:

When a new session is started, do this…

¶ Set the initial betting amount of 15 to a data record amount

¶ Set the initial table minimum limit of 1 to data record minimum

¶ Call Input routine to allow user to select an initial amount to bet and

table minimum bet

On every spin, check for…

¶ On a win, decrease bet by 1 by subtracting 1 from data record

amount

o Check if minimum table bet has been reached and if so, stop

session.

¶ On a loss, increase bet by 1 unit by adding 1 to data record amount

o Check if Bankroll has been depleted and if so, stop session

¶ Copy the last color that has appeared to data record color

¶ Place a bet on data record color at using the data record amount

¶ If 0 appears, bet on last color

Method “Input” routine here…

o Input “Enter starting initial bet” (default is 15)

o Input “Enter minimum table bet” (default is 1)

The entire system written in RX Scripting is shown on the next page.

Creating Roulette Systems Chapter 5

77

D’Alembert system written in RX Scripting from the algorithm above.

System " DôAlembert"

{

Uses the DôAlembert progression system for the "follow the

color" session

}

Method " main "

Begin

 While Starting a New Session

 Begin

 Put 15 on Record " amount " Data

 Put 1 on Record " minim um" Data

 Call "Input"

 End

 While on Each Spin

 Begin

 If Any Even Bet has Won Each time

 Begin

 Subtract 1 on Record " amount " Data

 If Record " amount " Data < Record " minimum " Data

 Begin

 Stop Session

 End

 End

 If Any Even Bet has Lost Each time

 Begin

 Add 1 to Record " amount " Data

 If Bankroll <= 0

 Begin

 Stop Session

 End

 End

 Copy Last Red - Black to Recor d " color " Layout

 Put 100% of Record " amount " Data

 to Record " color " Layout

 End

End

Method " Input "

Begin

 Group

 Begin

 Input Data " Enter starting initial bet "

 to Record " amount " Data

 Input Data " Ent er minimum table limit "

 to Record " minimum " Data

 End

End

Creating Roulette Systems Chapter 5

78

Reverse D’Alembert System

The reverse D’Alembert system is sometimes called contra-Alembert. This system

was developed for players who couldn’t consistently win with the regular system.

The betting progression system is in the reverse of D’Alembert where after each loss,

one unit is subtracted from the next bet and after each win, one unit is added to the

next bet. Let’s take an example of how this type of betting system works.

BET # UNITS BET RESULT NET GAIN

1 5 lose -5

2 4 win -1

3 5 lose -6

4 4 win -2

5 5 win +3

6 6 lose -3

7 5 win +2

This method builds on winning streaks instead of chasing losses. The problem can

occur is when to abandon a winning streak as you can see you would eventually hit

the minimum table limit. As you can see from the example above, there are 4 wins

and 3 losses. Again, this type of system is best when played on the even chance

layouts. The reverse D’Alembert system that is created in this book will use the

follow the color option of red and black and will stop after having four wins in a

row or if you hit the table minimum. The algorithm is written like this:

When a new session is started, do this…

¶ Set the initial betting amount of 5 to a data record amount

¶ Set the initial table minimum limit of 1 to data record minimum

¶ Call Input routine to allow user to select an initial amount to bet and

table minimum bet

On every spin, check for…

¶ On a win, increase bet by 1 by adding 1 to data record amount

o Check if minimum table bet has been reached or there are 4

wins in a row, stop session.

¶ On a loss, decrease bet by 1 unit by subtracting 1 from data record

amount

o Check if Bankroll has been depleted and if so, stop session

¶ Copy the last color that has appeared to data record color

¶ Place a bet on data record color at using the data record amount

¶ If 0 appears, bet on last color

Method “Input” routine here…

o Input “Enter starting initial bet” (default is 5)

o Input “Enter minimum table bet” (default is 1)

The entire system written in RX Scripting is shown on the next page.

Creating Roulette Systems Chapter 5

79

Reverse D’Alembert system written in RX Scripting from the algorithm above.

System " Reverse D' Alembert "

{

Uses the reverse D' Alembert progression system for the

"follow the color" sessi on

}

Method " main "

Begin

 While Starting a New Session

 Begin

 Put 5 on Record " amount " Data

 Put 1 on Record " minimum " Data

 Call "Input"

 End

 While on Each Spin

 Begin

 If Any Even Bet has Won Each time

 Begin

 Add 1 on Record " amount " Data

 If Record " amount " Data < Record " minimum " Data

 Or Record " color " Layout has won 4 times in a row

 Begin

 Stop Session

 End

 End

 If Any Even Bet has Lost Each time

 Begin

 Subtract 1 to Record " amount " Data

 If Bankroll <= 0

 Begin

 Stop Session

 End

 End

 Copy Last Red - Black to Record " color " Layout

 Put 100% of Record " amount " Data

 to Record " color " Layout

 End

End

Method " Input "

Begin

 Group

 Begin

 Input Data " Enter starting initial bet "

 to Record " amount " Data

 Input Data " Enter minimum table limit "

 to Record " minimum " Data

 End

End

Creating Roulette Systems Chapter 5

80

Labouchere System

The Labouchere system is also known as a cancellation system. Like the Martingale,

it is a progressive method of betting. However, it is unlikely you will run up against

the table limit. The Labouchere is a complicated method and requires the use of a

pencil and paper while visiting land based casinos. Of course, when using Roulette

Xtreme software, those items are not needed. Again, this system is mostly used on

the even chance layouts. The system starts with an arbitrary line of numbers such

as 1-1-2-3. The initial bet is the sum of the first and last numbers in the line. In

this case: 4. If the initial bet wins, the first and last numbers in the line are cancelled

(crossed off) leaving numbers 1-2. The next bet will be 3 units (adding the first and

last numbers in the line). If the bet loses, the sum of 3 is then added to the end of

the line as such: 1-2-3. Then the next bet repeats by taking the sum of the first

and last numbers which is 4 and so on until the entire line is cancelled (crossed off).

At which this session is ended and a new line is started. The total profit made when

the entire line is cancelled is the sum of the original starting line. In this case, it

would be 7 units. Let’s take an example of how this type of betting system works.

BET LINE UNITS

BET

RESULT NET GAIN

1-1-2-3 4 lose -4

1-1-2-3-4 5 lose -9

1-1-2-3-4-5 6 lost -15

1-1-2-3-4-5-6 7 win -8

1-2-3-4-5 6 win -2

2-3-4 6 lose -8

2-3-4-6 8 lose -16

2-3-4-6-8 10 win -6

3-4-6 9 win +3

4 4 lose -1

4-4 8 win +7

In the example above, the last line cancelled with a net gain of 7 units which is the

sum of the numbers from the original line. The more important note here is that the

net gain was obtained after six losses and five wins. Clearly a distinct advantage

over the D’Alembert system. You should also note that when the line got down to 4,

the bet was also 4. The rule is in this method: when the line is reduced to a single

number, bet only with that number. The starting line can be of any length and

contain numbers of any values. The larger the line, the more aggressive the session.

Therefore, it is good practice to keep your starting line small as not to risk betting

large bets at once. Having small lines with small wins is your best attack for this

system. For example:

MILD AGRESSIVE

1-1 1-2-3-4

1-2 5-1-10-12-5

1-1-1 4-4-5-6-1-10

Creating Roulette Systems Chapter 5

81

The Labouchere system that is created in this book will perform by placing bets on

the even chance layout (user choice) and the starting line will be 1-1. The session

will end after the bankroll has been depleted and the session will reset after the line

1-1 is completely cancelled (crossed-off). Note that this system is using multiple call

routines to help organize the system. The algorithm is written like this:

When a new session is started, do this…

¶ Call Initialize routine to set starting line to 1-1

¶ Call Input routine to allow user to select layout type

¶ Call Place Bets routine to make the initial bet

On every spin, check for…

¶ On a win, call Remove Line routine to remove first and last number in

the line

o Check if the entire line is cancelled and if so, display message

and call Initialize routine to set starting line to 1-1.

¶ On a loss, call Append Line routine to add the last bet to the end of

the line

o Check if Bankroll has been depleted and if so, display a

message and stop session

¶ Call Place Bets routine to make another bet

Method “Place Bets” routine here…

¶ Take the sum of the first and last number in the line of data record

line and store it to a data record sum

¶ Place a bet from the data record sum to the even chance layout stored

in the data record even chance

Method “Remove Line” routine here…

¶ Cancel the first and last number in the line of data record line

Method “Append Line” routine here…

¶ Append the last bet amount to the end of the line of data record line

Method “Initialize” routine here…

¶ Set line to 1-1 on data record line

Method “Input” routine here…

¶ Input “Select even chance layout type of: (Red, Black, Odd, Even,

High, Low)

¶ Copy this layout type to a data record called even chance

You will see in the system on the next page that using multiple call routines make

the system easier to understand.

Creating Roulette Systems Chapter 5

82

Labouchere system written in RX Scripting

System " Labouchere "

{

 Labouchere system with starting line @ 1 - 1

}

Method " main "

Begin

 While Starting a New Session

 Begin

 Call " Initialize "

 Call " Input "

 Call " Place Bets "

 End

 While on Each Spin

 Begin

 If Any Even Bet has Won Each time

 Begin

 Cal l " Remove Line "

 If Record " line " Data Count = 0

 Begin

 Display " Line Complete "

 Call " Initialize "

 End

 End

 If Any Even Bet has Lost Each time

 Begin

 Call " Append Line "

 If Bankroll <= 0

 Begin

 Display " Bankroll Depleted "

 Stop Session

 End

 End

 Call " Place Bets "

 End

End

Method " Place Bets "

Begin

// get the first number and store to record ñsumò

 Put 1 on Record " lin e" Data Index

 Put 100% of Record " line " Data to Record " sum" Data

// if more than 1 number in line, add last number to ñsumò

 If Record "line" Data Count>1 Begin

 Set Max to Record " line " Data index

 Add 100% of Record " line " Data to Record " sum" Data

 End

// place a bet of the sum number to even chance layout

 Put 100% of Record " sum" Data to

 Record " even chance " Layout

End

Creating Roulette Systems Chapter 5

83

System continued from previous page

Method " Remove Line "

Begin

// remove the l ast number by using the move list down

 Move List Down by 1 on Record " line " Data

// remove the first number by using the move list up twice

 Move List Up by 2 on Record " line " Data

End

Method "Append Line"

Begin

// point to the end of the line usi ng max

 Set Max to Record " line " Data Index

// set the pointer past the end of the record

 Add 1 to Record " line " Data Index

// store the last bet to the end of the list

 Put 100% of Record " sum" Data to Record "line" Data

End

Method "Initializ e"

Begin

// initialize the list to 1 - 1

 Set List [1,1] to Record " line " Data

End

// select which even chance layout to use

Method "Input"

Begin

 Input Dropdown " Select even chance layout type

 1:=Red

 2:=Black

 3:=Od d

 4:=Even

 5:=High

 6:=Low " to Record " type " Data

 If Record " type " Data = 1 then Begin

 Copy Red to Record " even chance " Layout End

 If Record " type " Data = 2 then Begin

 Copy Black to Record " even chan ce " Layout End

 If Record " type " Data = 3 then Begin

 Copy Odd to Record " even chance " Layout End

 If Record " type " Data = 4 then Begin

 Copy Even to Record " even chance " Layout End

 If Record " type " Data = 5 then Begin

 Copy Hig h to Record " even chance " Layout End

 If Record " type " Data = 6 then Begin

 Copy Low to Record " even chance " Layout End

End

End

Creating Roulette Systems Chapter 5

84

Inside Number System

The Inside Number system in this book is designed to target a single number

particular a number that is overdue. However, for this system to work effectively

and stretch your bankroll as far as possible, the system starts by placing bets on the

dozen layout of the target number. Then after a couple of spins with no hits,

progress to the line layout, followed by the corner bet, the street, the split and finally

the target number. The progression is as follows – assuming target number 26.

BET #
BET

TYPE
PAYS

BET

AMOUNT

NET

LOSS

NET

WIN

1 Dozen 2 1 1 2

2 Dozen 2 1 2 1

3 Line 5 1 3 3

4 Line 5 1 4 2

5 Line 5 1 5 1

6 Corner 8 1 6 3

7 Corner 8 1 7 2

8 Corner 8 1 8 1

9 Street 11 1 9 3

10 Street 11 1 10 2

11 Street 11 1 11 1

12 Split 17 1 12 6

13 Split 17 1 13 5

14 Split 17 1 14 4

15 Split 17 1 15 3

16 Split 17 1 16 2

17 Split 17 1 17 1

18 #26 35 1 18 18

19 #26 35 1 19 17

20 #26 35 1 20 16

21 #26 35 1 21 15

- - - - - -

- - - - - -

 32 #26 35 1 32 4

33 #26 35 1 33 3

34 #26 35 1 34 2

35 #26 35 1 35 1

36 #26 70 2 37 35

Creating Roulette Systems Chapter 5

85

Notice at spin # 36, the system doubles the bet. The doubling continues if you do

not win every 35 spins. As you can see, there is a chance of hitting the table

maximum in about 315 spins. Clearly you have a good chance of winning before the

315th spin but if this doesn’t happen then you will loose about 547 units. It is

better to have a stop loss to prevent such a tragedy.

This system has several user inputs that allow you to enter several items such as:

starting bankroll, win goal, stop loss and the number of sessions to play. Set these

to match your comfort level when playing this system with any online casino game.

 The algorithm is written like this:

When a new session is started, do this…

¶ Set roulette table layout to single wheel (0)

¶ Call Initialize routine to setup variables

¶ Call Input routine to allow user to make input selections

On every spin, check for…

¶ Increment data record Spin Counter and data record Multiplier

Counter by 1

¶ Call Check for loss routine to see if the system is below the stop loss

¶ Call Check for win routine to see if the system achieved its win goal

¶ If the flag is false for Ready to Bet then do the following…

o Copy the last number to a data record Target Number

o If the last number is 0, then skip and wait for another spin else

set the flag Ready to Bet to true

¶ If the flag is true for Ready to Bet then do the following…

o Call Place Bets routine to make a bet on the layout determine

by the progression count.

Method “Check for loss” routine here…

¶ If any outside or inside bet has lost, do the following…

o If the bankroll is less that the stop loss

Á Display a message, end the session and exit program

Method “Check for win” routine here…

¶ If any outside or inside bet has won, do the following…

o If there are remaining sessions to play, do the following…

Á Decrement data record Sessions by 1

Á If data record Sessions is <= 0 the

¶ Display a message, end the session and exit the

program

o If the Bankroll is greater than win goal

Á Display a message, end the session and exit the

program

o Call Initialize routine to setup variables and start over

Creating Roulette Systems Chapter 5

86

Method “Place Bets” routine here…

¶ If data record Spin Counter is between 1 and 2, do the following…

o Place a bet reference by bet amount to the data record

Target Number nearest Dozen layout

¶ If data record Spin Counter is between 3 and 5, do the following…

o Place a bet reference by bet amount to the data record

Target Number nearest Line layout

¶ If data record Spin Counter is between 6 and 8, do the following…

o Place a bet reference by bet amount to the data record

Target Number nearest Corner layout

¶ If data record Spin Counter is between 9 and 11, do the following…

o Place a bet reference by bet amount to the data record

Target Number nearest Street layout

¶ If data record Spin Counter is between 12 and 17, do the following…

o Place a bet reference by bet amount to the data record

Target Number nearest Split layout

¶ If data record Spin Counter is >= 18, do the following…

o If data record Multiplier Counter is > 35

Á Reset the data record Multiplier Counter to 0

Á Double the data record bet amount

o Place a bet reference by data record bet amount to the data

record Target Number layout

Method “Initialize” routine here…

¶ Clear contents of data record Target Number

¶ Initialize data record bet amount to 1

¶ Initialize data record Spin Counter to 1

¶ Initialize flag Ready to Bet to false

Method “Input” routine here…

¶ Display message “For Single Zero wheel”

¶ Input your starting bankroll

¶ Input your win profit

¶ Input you stop loss

¶ Input how many sessions to play

¶ Add Bankroll to data record Win and data record Stop loss

The actual system Inside Numbers is shown on the next few pages.

Creating Roulette Systems Chapter 5

87

Inside Numbers system (continues on next 3 pages)

System " Inside Numbers"

{

 Take the last number, bet on its layout in this order

 Dozen for 2 times , Line for 3 times , Corner for 3 times ,

 Street for 3 time , Split for 6 times , Straight - up

 until a win (doubling bet every 35 spins)

 On win, reset and take the next last number, repeat above

}

Method " main "

Begin

 While Starting a New Session

 Begin

 Load Single Wheel

 Call " Initialize "

 Call " Input "

 End

 While on Each Spin

 Begin

 Add 1 to Record " Spin Counter " Data

 Add 1 to Record " Multiplier Counter " Data

 Call " Check for l oss "

 Call " Check for win "

 If Flag " Ready to Bet " is False

 Begin

 Copy Last Number to Record " Target Number" Layout

 If Record " Target Number" Layout not = Number 0

 Begin

 Set Flag " Ready to Bet " to True

 End

 End

 If Flag " Ready to Bet " is True

 Begin

 Call " Place Bets "

 End

 End

End

Method " Check for l oss "

Begin

 If Any Inside Bet has lost each time

 Or Any Outside Bet has lost each time

 Begin

 If Ba nkroll<= Record " Stop " Data

 Begin

 Display " You have reached your Loss target.

 System will End "

 Stop Session

 Exit

 End

 End

End

Creating Roulette Systems Chapter 5

88

System continued from previous page

Method " Check for win "

Begin

 If Any Inside Bet has won each time

 Or Any Outside Bet has won each time

 Begin

 If Record " Sessions " Data Not = 0

 Begin

 Subtract 1 from Record " Sessions " Data

 If Record " Sessio ns " Data <=0

 Begin

 Display " You have completed all sessions.

 System will End "

 Stop Session

 Exit

 End

 End

 If Bankroll>= Record " Win" Dat a

 Begin

 Display " You have reached your Win goal.

 System will End "

 Stop Session

 Exit

 End

 Call " Initialize "

 End

End

Method " Place Bets "

Begin

 If Record " Spin Counter " Data >=1

 And Record " Spin Counter " Data <=2

 Begin

 Put 100% of Record " bet amount " Data to Dozen nearest

 of Record " Target Number" Layout

 End

 If Record " Spin Counter " Data >=3

 And Record " Spin Counter " Data <=5

 Begin

 Put 100% of Record " bet amount " Data to Line nearest

 of Record " Target Number" Layout

 End

 If Record " Spin Counter " Data >=6

 And Record " Spin Counter " Data <=8

 Begin

 Put 100% of Record " bet amount " Da ta to Corner

 nearest of Record " Target Number" Layout

 End

Creating Roulette Systems Chapter 5

89

System continued from previous page

 If Record " Spin Counter " Data >=9

 And Record " Spin Counter " Data <= 11

 Begin

 Put 100% of Record " bet amount " Data

 to Street nearest of Record " Target Number" Layout

 End

 If Record " Spin Counter " Data >=12

 And Record " Spin Counter " Data <=17

 Begin

 Put 100% of Record " bet amount " Data to Split nearest

 of Record " Target Number" La yout

 End

 If Record " Spin Counter " Data >=18

 Begin

 If Record " Multiplier Counter " Data >35

 Begin

 Put 0 on Record " Multiplier Counter " Data

 Multiply 2 to Record " bet amount " Data

 End

 Put 100% of Record " bet amount " Data to Record

 " Target Number" Layout

 End

End

Method " Initialize "

Begin

 Clear Record " Target Number" Layout

 Put 1 on Record " bet amount " Data

 Put 0 on Record " Spin Counter " Data

 Set Flag " Ready to Bet " to False

End

Method " Input "

Begin

 Put 1 on Record " Sessions " Data

 Put 10 on Record " Win" Data

 Put 50 on Record " Stop " Data

 Put 100% of Bankroll to Record " Bankroll " Data

 Group

 Begin

 Display "For Single Zero whe el"

 Input Data " Enter your starting Bankroll "

 to Record " Bankroll " Data

 Input Data " Enter your Win Profit units " to

 Record " Win" Data

 Input Data " Enter your Stop Loss units " to

 Record "Stop " Data

 Input Data " Enter how many sessions to play

 0=unlimited " to Record " Sessions " Data

 End

Creating Roulette Systems Chapter 5

90

System continued from previous page

 Put 100% of Record " Bankroll " Data to Bankroll

 Add 100% of Bankroll to Record " Win" Data

 // Setup the Stop Loss by taking Bankroll - Stop

 // = Lowest Bankroll to keep

 Put 100% of Bankroll to Record " temp " Data

 Subtract 100% of Record " Stop " Data to Record " temp " Data

 Put 100% of Record " temp " Data to Record " Stop " Data

End

91

RX SCRIPTING

TEMPLATE 6

Do you create several systems and you noticed that you always create the same

method routines such as placing a bet, checking for losses, asking for data inputs?

You can create your system faster by using a template that provides most of the

methods you need.

This chapter includes a template that you can use when creating a system and I will

also show you how you can make this template be the default every time you create

a new system when using the System Editor from Roulette Xtreme software.

RX Scripting Template Chapter 6

92

Template to use when creating new systems

System " My System "

{

 Comment section

}

Method " main "

Begin

 While Starting a New Session

 Begin

 Call " Initialize "

 Call " Input "

 End

 While on Each Spi n

 Begin

 Call " Check for Loss "

 Call " Check for win "

 Call " Place Bets "

 End

End

// routine to deal with any losses

Method " Check for Loss "

Begin

End

// routine to deal with any wins

Method " Check for win "

Begin

End

// routine t o place bets on layouts

Method " Place Bets "

Begin

End

// routine to initialize the system

Method " Initialize "

Begin

End

// routine to ask for any data inputs

Method " Input "

Begin

End

As you can see, this template contains methods that you can use to check for losses,

wins, place bets, initialize data and ask for inputs. However, this template is one

example. You can always add or subtract from this template any method routines

that you commonly use throughout your system designs.

On the next page, I’ll show you how easily you can add this to Roulette Xtreme

System Editor so every time you select File -> New, this template will be added.

RX Scripting Template Chapter 6

93

Adding the Template to System Editor

To add this template to the System Editor, perform the following steps:

1. Open the System Designer by selecting Designer -> System Designer from

the main screen of Roulette Xtreme.

2. Within the System Designer, select Options -> Editor Options from the

menu.

3. Click on the Auto Completion tab of the options screen.

4. Scroll down until you find the default template and click on that line.

5. Click inside the system editor screen just below New, Edit and Delete buttons.

6. Copy/Paste the template from the previous page into the system editor

screen.

7. Click Ok to close the options screen.

Now every time you select File -> New, this template will be added to the system

editor ready for you to start creating systems without the need to create the same

methods over and over.

See screen below of the Auto Completion tab with this template added.

94

